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Nuclear Model Validation

Why model validation

O Numerical simulations of nuclear models are not perfect due to approximations and
uncertainties in mathematical models and data

U Biases (prediction error) and bias uncertainties (how well do we know our
prediction error) need to be calculated for nuclear application in order to calculate
safety margins

« Criticality Safety (spent fuel storage, nuclear waste containers, reactor startups)
* Nuclear Reactor Safety (Dynamic Safety Margin Characterization)

« Advanced Nuclear Reactor Designs, e.g., Molten Salt Reactors

? PU RDUE School of Nuclear Engineering

UNIVERSITY 6/7/2022 | 2



Nuclear Model Validation

Tasks and challenges

O Validation carries out the following tasks:
« Determine computational biases (discrepancy between predictions and measurements)
« Quantify uncertainties of responses from major sources of uncertainties

* Map biases and uncertainties to application under given conditions

QO Current validation methods suffer from several challenges:
* Limited number of relevant benchmark experiments
* Only parameter uncertainties quantified (absence of modeling uncertainties)
* Relies heavily on parametric regression (e.g., fitting)

* Not clear when it fails and why it fails
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Model Validation

Problem setup

Uncertainty

Model Prediction

m

B Known
B Unimportant

B Unknown

27 FURPYE

I Experiment

" Application

School of Nuclear Engineering

Measurement

B Experiment

6/7/2022 |

4



Model Validation

Problem setup

Uncertainty

m

B Known
B Unimportant

B Unknown

27 FURPYE

Model Prediction

I Experiment

" Application

School of Nuclear Engineering

Measurement

B Experiment

6/7/2022 |



Model Validation

Problem setup

Uncertainty Model Prediction
I =
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Model Validation

Problem setup

Uncertainty Model Prediction
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Model Validation

Problem setup

Uncertainty Model Prediction Measurement
I = m
B Known I Experiment B Experiment
B Unimportant " Application
B Unknown
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Model Validation

Problem setup

Uncertainty Model Prediction Measurement
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Model Validation

Uncertainty Sources

Uncertainty Model Prediction Measurement
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Model Validation

Uncertainty Sources

Uncertainty Model Prediction
O =

B Known B Experiment
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parameter uncertainty
e.g., nuclear data uncertainty
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Model Validation

Uncertainty Sources

Uncertainty Model Prediction
I =

B Known B Experiment

B Unimportant " Application

B Unknown \

e.g., numerical uncertainty
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Model Validation

Uncertainty Sources

Uncertainty Model Prediction Measurement
o = =

B Known I Experiment B Experiment
B Unimportant 2 Application

B Unknown
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e.g., modeling uncertainty
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Model Validation

Validation process

Uncertainty Model Prediction
o =

B Known p(x) ™ Experiment P(Yeal
B Unimportant . Application P(Yeal )
= Unknown

? PU RDUE School of Nuclear Engineering

UNIVERSITY

Measurement

= Experiment

6/7/2022 | 14



Model Validation

Validation process

Uncertainty Model Prediction
o =
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Model Validation

Objective

Uncertainty Model Prediction Measurement

o = o

B Known p(x) ™ Experiment POVeal B Experiment  PVmsr
B Unimportant B Application Peat)

B Unknown TP

Experiment Measurement
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Model Validation

Calibration-based Techniques

Uncertainty

B m

Model Prediction

Measurement

exp
 Experiment p(ymsr)

Disagreement

Discrepancies between predicted and
measured responses, including their
1st order derivatives, adjust model

exp
B Known p(x) ™ Experiment POeat)
1 : ‘)
. xadj ‘
- —
Adjusting Parameters
. ex ex
mxln||ym£" _ f p(x, u)”
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Model Validation

Calibration-based Techniques

Uncertainty Model Prediction

I =

B Known  p(x*¥) -

- B Application

- > p(y™?)

Adjusted parameters are
used to predict biases and
uncertainties of application
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Model Validation

PCM-based Validation

Uncertainty Model Prediction Measurement
o = o
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Model Validation

PCM-based Validation

Uncertainty Model Prediction Measurement
o = o
B [Known p(x) ¥ Experiment p(yﬁﬁf) —. Experiment P(Vmsr)
B |Unimportant == Application P(Veal
B Unknown ¥ .
e )
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Physics-quided Coverage Mapping

Objective of PCM

dProvide reliable mapping of biases and uncertainties incorporating
both experimental and application conditions

dOvercome some of the challenges with current validation approaches

dDetermine relationship between application and all available
experiments using information theory principles

dAdd information from each experiment, albeit small if not strongly
relevant to application
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Physics-quided Coverage Mapping

Find Mapping Kernel between Application and Experimental Responses

= Direct mapping between application quantity of interest and app
experimental responses (do not need to be same type)

= All sources of uncertainties can be included via sampling, both
simulation and measurements

= Cloud of results harvested for highest-informing correlations
between application quantities of interest and experimental °
responses (search guided by quantitative metric, mutual '
information) ® o o

* Assumption-free approach for measuring information content, due to ® 0 m
C. Shannon 1945 o ¢

PPCM app J‘ P ,qy (q;a ) a’qy
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Physics-quided Coverage Mapping

(a) Low Mutual Info. & (b) High Mutual Info. & (c) High Mutual Info. &
Perfect Measurements Uncertain Measurements Perfect Measurements
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Physics-quided Coverage Mapping

Can define reduction in entropy assuming perfect
(or varying level of uncertainty for) measurements

H

[PPCM (qapp ))

app | _
()=

[ pPrior (qapp ))

Allows one to compare different experimental
setups, and sensor types before conducting the

experiment.
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PCM for Isotopic Validation

Application:

How to predict isotopics from different irradiation history, ™ u
lattice types, reactor types, sources of uncertainties, etc. "

;08 0.061 — prior PDF 0.06
Predicted PDF by P(
Prior Mean
Predicted Mean by
0.04 0.04 -~ Highest Probable b 0.04
0.02
0.02 0.02
§ % 0.00
> 000 000 N
-0.02
-0.02 —0.02
-0.04
-0.04 -0.04
-0.06
-0.04 -0.02 0.00 0.02 0.04 0 10 20 —0.06 -0.04 -0.02 0.00 0.02 0.04
yexe yorP
Measurements of Experiments ! 600 Measurements of Experiments
+ 500
r 400
f 300
200
im
-0.04 -0.02 0.00 0.02 0.04 L -0.06 —-0.04 -0.02 0.00 0.02 0.04

Single Predictor

J =) PURDUE

UNIVERSITY

Multiple Predictors

School of Nuclear Engineering

0.06

-0.02

-0.04

—0.06

|
Prior PDF

Predicted PDF by PCM
Prior Mean

Predicted Mean by PCM

1200
1000
800
600
200
200

/,/ . \// //’ ™ > . . \\\
/ > | ANy -
D R [/ <N
I \ i i f -

i |

k ! ' !

b r ", d L /
NS

b p

e e . e ey

o T . L T

y e Y e . // /(_,. ~ 4
; y
f 4 ' ST F !

i | R i
\ ARG AN J
; | /o | ’.
Lo ; 2 5 i
b o g Al e A s
Sy - e - ey =

T - o - = =
P AN A e AN AN =
. ,/ \ Y Sy \\ |

/
NS ., .
N _F,/ AN B,

3x3 P\\NR"’Ass‘émb"I

b

yb

'

/ Vi

A \kq_ e
L

"
;

y Polaris

e .

oy,

3x3 BWR Assém

bl

o

yb

o -

y Polaris | 25



PCM for Isotopic Validation

Validation across Reactor Types

» Application: Pu-241 concentrations across burnup
> Experiment: U-235, U-238, Pu-239, Pu-241 concentrations at 50 GWD/MTU from PWR

0.08 1
. 0.06

= Best-estimate values c
follow measurements ® 0.049

c
= Prediction uncertainty g 0021
reduced with PCM S 0.00+

. <
= ~50% uncertainty Y —0.021
reduction using validation % ~0.04-
experiments from T 06
different reactor types 008
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PCM for Isotopic Validation

Validation with Different Uncertainty Sources

> Application: U-238 concentrations across burnup from PWR
» Experiment: U-235, U-238, Pu-239, Pu-241 concentrations at 50 GWD/MTU from PWR
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Average Uncertainty Reduction

» Experiment: U-235, U-238, Pu-239, Pu-241 concentrations at 50 GWD/MTU
» Measurement uncertainty: 0.01%

Table. Average Uncertainty Reduction Fraction across Burnup

U-235 74% 74%
U-238 66% 98%
Pu-239 84% 87%
Pu-241 63% 70%

* 60-85% uncertainty reduction with cross-section perturbed only

» 70%-95% uncertainty reduction with all parameters perturbed
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Fission Product Validation

» Application: Xe-135 concentrations across burnup
» Experiment:
« Single: Xe-135 concentration at 50 GWD/MTU
« Multiple: U-235, U-238, Pu-239, Pu-241 concentrations at 50 GWD/MTU
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Concluding Remarks

* PCM method is a information theory-based approach guided by physics
models in support of model validation

= PCM allows for transfer of biases directly from experimental domain to
application domain, greatly reduces prediction uncertainties

= PCM provides a simple stochastic approach as an alternative to data
assimilation/calibration-based techniques, addressing some of challenges
using current validation approaches

» Future work will extend to MSR dynamic validations with liquid fuel
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THANK YOU

Questions?

Please contact
huang/714@purdue.edu; abdelkhalik@purdue.edu
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Central Problem in Model Validation

Simulation

Attempts to Reduce
Disagreement for
Limited Set of
Experiments

\

Target Application Conditions 1

Application Domain

Attempts to
Extrapolate
Predictions to Other
Conditions

Target Application Condjk
Target Application Conditions N
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Mapping Uncertainties via Classical DA Techniques

Simulation

DA tries to Fix Errors
in Simulation in order
to make better
predictions for target
applications

\

Target Application 1

Application Domain

DA Algorithms
introduce many
assumptions that are
difficult to validate

Target Application 2
Target Application N
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Mapping Uncertainties via PCM

Find Informative Patterns in Simulation Cloud

e

Samples all Sources
of Uncertainties

Target Application 1

Application Domain

Target Application 2
Target Application N
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Mapping Uncertainties via Machine Learning

Vapnik’s principle

Predicted Quantities
of Interest

“when solving a
problem of interest, Par'a”rgz;rs || ~ Mapping
do not solve a more
genemlpmblem as > » Predicted Responses Measured Responses
an intermediate
step”

Generative §
Model |}

-
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