RADIOLYTIC F₂ PRODUCTION FROM MSR RELEVANT FLUORIDE SALTS

Lance Davis

Nuclear Research & Consultancy Group (NRG)

Prepared for: YMSR Conference, Politecnico di Milano, Lecco campus, June 6 - June 8, 2022

Nuclear. For life.

High Flux Reactor (HFR), Petten - NL

Operator: NRG

Power: 45 MW thermal

Applications: Isotope production; Irradiation services; R&D (fuels and materials)

Operation: 30/31 operation days per irradiation cycle; 9 cycles per year

SAGA Experiment – Background & Aim

Background:

- Molten Salt Reactor Experiment (MSRE) programme at ORNL appreciable quantities of fluorine gas production from fluoride salts [1][2].
- Radiolytic production of corrosive fluorine (F₂) gas operational and long-term safety risk w.r.t. MSR chemical processes.

Objectives/Aims:

NRG has conducted the first phase of the **SA**It **GA**mma **(SAGA)** experimental project. The main objectives of the SAGA experimental project:

- Determine F₂ production efficiencies (G-values) and saturation levels for several MSR relevant fluoride (and chloride!?) salts
- > Quantify suppression of F_2 production with increasing grain size
- > Determine rates of F_2 recombination as a function of temperature

ORNL MSRE Salt gamma irradiation experiment device (Toth & Felker, 1990) [3]

Salt Samples – Details & Description

- Pre-fluorinated Monel-400 (Ni-Cu) capsules
- Cleaning and rinsing with 0.5% HF solution (elimination of potential oxide layers)
- Fluorination/passivation of capsules at 150 °C prior to salt loading and capsule sealing
- Inner (1st containment) capsules placed into outer capsule (2nd containment) containing HTC NI-600RP activated catalyst
- Inner capsules connected to pressure sensors via 50 cm minitubes

Capsule	Sample	Physical form	Mass (g)
1	BeF ₂	Fine powder	6.0 ± 0.1
2	LiF	Fine powder	8.5 ± 0.1
3	He (empty reference)		
4	71.7LiF-16BeF ₂ -12.3UF ₄	Fine powder	13.9 ± 0.1
5	UF_4	Fine powder	14.1 ± 0.1
6	ThF_4	Fine powder	12.4 ± 0.1

SAGA facility – Assembly

- 6 capsules (1st + 2nd containment) placed in a larger facility providing the 3rd containment
- Lead instrumentation shielding at the head of SAGA facility
- Sample capsules arranged in a cylindrical array and held in position by an aluminium holder

HFR Spent Fuel – Gamma Source

- SAGA facility containing the salt samples irradiated in a central position surrounded by 8 spent fuel elements (FEs) in the HFR spent fuel rack (SFR)
- \blacktriangleright Maximize dose \rightarrow Fuel elements with highest burn-up and shortest cooling time
- Type-1 (F1) FE coming from the most recent HFR cycle, Type-2 (F2) FE from the previous HFR cycle.

Quantification of gamma field

*Point a – start of SAGA irradiation

Pressure & Temperature measurements

• Data recording resolution – 1 minutes

SAGA irradiation interrupted on two occasions for

gamma dose measurements; Points b - c and d - e.

Point **a** – start of SAGA irradiation Point **b** – SAGA removal Point **c** –SAGA insertion Point **d** – SAGA removal Point **e** – SAGA insertion

Data processing – F₂ production & dose absorbed

Pressure to F₂ production:

 Ideal gas law applied to – (1) Normalize pressure deviations due to temperatures by dividing recorded pressures by recorded temperatures for each salt capsule, and (2) obtain F₂ quantity in moles

Dose absorbed by salt (absorption factors):

- FEs gamma emission spectrum MCNP and FISPACT depletion calculations.
- Emission spectrum → MCNP simulation of sample array → dose rates in the salts and He/air
- Dose absorption factor $\sim \frac{\text{Computed salt dose rate}}{\text{Air (reference) dose rate}}$

Capsule	Sample	Dose absorption factor	
1	BeF ₂	0.93	
2	LiF	0.93	
3	He (empty reference)	1.00	
4	71.7LiF-16BeF ₂ -12.3UF ₄	2.50	
5	UF ₄	3.43	
6	ThF ₄	3.43	

Results - Radiolytic F₂ production

- F₂ production efficiency (*in molecules* F₂ per 100 eV) or <u>G-value</u>, is obtained by measuring the slope of the F₂ production vs dose absorbed plot.
- SAGA irradiation interruption → marked effect on F₂ production curves (except BeF₂) - does not invalidate max. Gvalues.
- Minimal to no induction period noted
- No production-recombination equilibria (saturation) observed

Results - Radiolytic F₂ production (cont.)

	<u>This work</u>	Similar work/Literature			
Salt type	G-Value [molecules F ₂ /100 eV]	G-Value [molecules F ₂ /100 eV]	Salt type (form)	Radiation source (dose rate)	Conducted by
BeF ₂	~ 0.008				
LiF	~ 0.003	0	LiF (?)	Soft X-rays (0.3 kGy/hr)	MSRE, ORNL [4]
71.7LiF-16BeF ₂ -12.3UF ₄ (FLiBe-UF ₄)	~ 0.004	0.005 – 0.031	65LiF-29BeF ₂ -5ZrF ₄ -0.66UF ₄ (solid plug)	Post-irradiation decay (varying)	MSRE, ORNL [4]
		0.045	65LiF-29BeF ₂ -5ZrF ₄ -0.66UF ₄ (solid plug)	⁶⁰ Co gamma source (6.3 kGy/hr)	MSRE, ORNL [2]
		0.012	65LiF-29BeF ₂ -5ZrF ₄ -0.66UF ₄ (powder)	HFIR Spent fuel (175 kGy/hr)	MSRE, ORNL [5]
		0.006	71.7LiF-16BeF ₂ -12ThF ₄ -0.3UF ₄ (solid)	In-core test (??)	NRCKI [6]
		0.01	66LiF-33BeF ₂ -1UF ₄ (solid)	In-core test (??)	NRCKI [6]
		0.005– 0.04	65LiF-29BeF ₂ -5ZrF ₄ -0.66UF ₄ (fine powder, < 50 μm)	Soft X-rays (1.26 kGy/hr)	MSRE, ORNL [4]
ThF ₄	~ 0.018	0.003 - 0.008	ThF ₄ (?)	Soft X-rays (2.9 kGy/hr)	MSRE, ORNL [4]

Conclusions & Recommendations

Conclusions:

- SAGA-01 successfully executed by NRG
- Radiolytic F₂ production efficiencies (G-values) for tested MSR salt matrices appears to be within the bounds of expectation

Recommendations:

A follow-up SAGA irradiation campaign (SAGA-02) to be conducted in order to verify and refine the G-values reported for these fluoride salts and the factors which influence it. The following changes are made to the experiment to improve measurements and scope:

- > SAGA facility should not be disturbed during the irradiation period
- Salt sample particle size characterization to be conducted
- The irradiation period will be extended in order to verify the existence of equilibria between production and adsorption/recombination
- Inclusion of one or more chloride salts will be added to the experiment to obtain information on chloride radiolysis (NaCl, KCl and/or a heavy chloride)

Acknowledgements

P.R. Hania

D.A. Boomstra

D.J. Rossouw

F.F. Charpin-Jacobs

J. Uhlir M. Marecek H. Beckers S. Riedel

This work is supported by the Dutch Ministry of Economic Affairs

References

- M. Rosenthal, R. Briggs, and P. Kasten, "Molten-salt reactor program semiannual progress report for period ending February 28, 1969." Tech. Rep. ORNL-4396. (Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).
- P. Haubenreich, "Fluorine production and recombination in frozen msr salts after reactor operation." Tech.
 Rep. ORNL TM-3144 (Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 1970.
- [3] L. Toth and L. Felker, "Fluorine generation by gamma radiolysis of a fluoride salt mixture," Radiation Effects and Defects in Solids 112, 201–210 (1990).
- [4] R. Briggs, "Molten-salt reactor program semiannual progress report for period ending july 31, 1964," Tech.
 Rep. Oak Ridge National Lab., Tenn., 1964.
- [5] D. Williams, G. D. Cul, and L. Toth, "A descriptive model of the molten salt reactor experiment after shutdown: Review of fy 1995 progress," 1996.
- [6] V. Ignatiev, "Molten salts characteristics under irradiation in fission related systems," IAEA TECDOC SERIES, 70 (2020).

Appendix A: Effect of salt size on F₂ production [5]

- Comparison of 1986 and 1995 HFIR irradiations
- Same salt type (i.e. MSRE salt) difference particle size
- Postulated that large salt particles experience higher heating which may drive the recombination backreaction

Appendix B: ORNL ⁶⁰Co gamma irradiation experiment [2]

