

Thermodynamic assessments of the LiF-ZrF₄-BaF₂, NaF-ZrF₄-BaF₂, KF-ZrF₄-BaF₂, KF-ZrF₄-BaF₂ systems

- T. Dumaire¹, L. Groot¹, J. A. Ocàdiz-Flores¹, R. J. M. Konings^{1,2}, A. L. Smith¹
- ¹ Delft University of Technology
- ² European Commission, JRC, Karlsruhe

7th of June 2022 Lecco

Background and context of research

Fuel reference: fluorides

- REFERENCE fuel for the MSFR
 - ⁷LiF ThF₄²³³UF₄ (77.5-20.0-2.5 mol %)
 - 7_{LiF} ThF₄ e^{nr} UF₄ PuF₃ (77.5-6.6-12.3-3.6 mol %)
- REFERENCE salt carrier
 - LiF/NaF/KF
- CORROSION PRODUCTS
 - Ni-based alloy as structural material
 - Soluble CrF_x (no passivation)
- FISSION PRODUCTS
 - Salt soluble fission products
 - Metallic precipitates
 - Gas

- Complex multi-component system
- Non-ideal thermodynamic behaviour

Barium and zirconium properties

Major fission products

For ²³⁵U and ²³⁸U fission products:

- ¹⁴⁰Ba: 4.7-5.4 % yield
- ⁹⁵Zr: 5.0-6.1 % yield
- ⁹⁷Zr: 5.3-5.8 % yield
- Short-lived radionuclides
- High potential for complexation

Chadwick, M. B. et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data *Nuclear Data Sheets, Elsevier BV*, **2011**, *112*, 2887-2996

Modeling method – CALPHAD (CALculation of PHAse Diagrams)

- Least-square minimization of the total Gibbs energy G of the system to find the thermodynamic equilibrium at given conditions (*T*, *P*, *x_i*).
 - G is expressed as a linear combination of the G for all phases:

elft

$$G(T, P, x_i) = \sum N^{\alpha} G_m^{\alpha}(T, P, x_i^{\alpha})$$

Modeling method – The quasichemical model

Modified quasichemical model in quadruplet approximation

- Formalism well-adapted to ionic liquids
- Two sub-lattices

(Li⁺, Ba³⁺, cations, ...) (F⁻, Cl⁻, anions)

• Basic unit = quadruplet composed of 2 anions and 2 cations

> Optimized excess parameters linked to SNN exchange reaction

$$\Delta g_{AB/Cl} = \Delta g_{AB/Cl}^{0} + \sum_{i \ge 1} g_{AB/F}^{i0} \chi_{AB/F}^{i} + \sum_{j \ge 1} g_{AB/F}^{j0} \chi_{AB/F}^{j}$$

ŤUDelft

Pelton, A. D. & Blander, M. Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach—Application to silicate slags *Metallurgical Transactions B, Springer Science and Business Media LLC*, **1986**, *17*, 805-815

Determination of thermodynamic data

- Synthesis by solid state route from pure compounds
- Determination of phases transitions along the composition range by DSC-TGA

Determination of phase diagram data

Thermodynamic assessment of LiF-BaF₂

- Based on updated experimental data
- Good agreement of the model with the exp. data

A. I. Agulyanskii and V. A. Bessonova, Meltability of salt mixtures containing fluorides of lithium, barium and lanthanum *Zhurnal neorganicheskd khimii*, **1982** *27*(4), 1029–1032.

Thermodynamic assessment of LiF-ZrF₄

- Based on the data of Thomas et al.
- Correct agreement but still some discrepancies with respect to eutectics
- **Experimental validation** would be needed but challenge of high volatility of ZrF_{4}

Thermodynamic assessment of BaF₂-ZrF₄

- Based on the data of Patkinova *et al.*
- Good agreement of the model with the exp. data

I. D. Patnikova, Y. M. Korenev, and P. P. Fedorov, Phase Diagrams of BaF₂ – RF₄ Systems (R = Zr, Hf) Journal of Inorganic Chemistry, **1997**, 42(2), 302–307.

Thermodynamic assessment of LiF-BaF₂-ZrF₄

Area above the operating safety temperature (873 K)

Thermodynamic assessment of the NaF-BaF₂-ZrF₄ system

Conclusion

- Barium and zirconium fission products present a high potential of solid intermediate compounds formation in the MSR
 - → Risks of: Precipitation during reactor operation?

- Contamination of the fuel salt with highly active isotopes that need to be considered in case of accidental release

• The systems demonstrated high stability above the operating temperature for a large range of compositions

Thank you for your attention! Any questions?

ŤUDelft