Young Molten Salt Reactor Conference
 Lecco, 06-08/06/2022

POLITECNICO DI MILANO

Preliminary Experimental Campaign for the Coupled DYNASTY-eDYNASTY Facility

G.Benzoni, <u>C.Introini</u>, S.Lorenzi, A.Cammi

MSFR Reactor

- After shutdown, heat generation due to the decay of fission products
- Decay heat removal system (secondary loop)
- Passive operation to not compromise the reactor overall safety also in case of accidental conditions
- Natural circulation with IHG

Natural Circulation Stability Problem

Natural Circulation Loops : DYNASTY

- IHG in experimental facilities is hard (nuclear / chemical reactions)
- Approximation of IHG with an EHS
- Distributed heat source (axial length greater than radial one)
- DYnamics of NAtural circulation for molten SalTs internallY heated (DYNASTY)

Secondary Coupled Loop : eDYNASTY

- Intermediate loop of the MSFR
- Containment between the radioactive fuel and the environment
- Decay heat removal
- eDYNASTY-DYNASTY coupled

loops facility

HX Coupling

- Coupling: coaxial heat exchanger operating in natural circulation on both fluids
- Localised heat source for eDYNASTY
- DYNASTY: inner (d = 38mm)
- eDYNASTY: annulus (d = 56mm)

eDYNASTY Preliminary Experimental Analysis

- Water as working fluid
- Maximum heating power (step input)
- No insulation (both loops)
- GV1 Case (SX DYNASTY vertical leg)
- GO1 Case (horizontal DYNASTY leg)
- Heating / cooling transient

VHHC – DYNASTY Flow Rate

Mass flow rate for coupled loops with fan at 0% 25 GV1 fan at 0% Mass Flow Rate (g/s) 0 0 0 00 00 20 Mass Flow Rate (g/s) 15 10 2.5 ×10⁴ 0.5 1.5 0 1 2 Time (s) 5 0 -5 -10 1.5 2.5 0.5 2 0 1 3 Time (s) $imes 10^4$

VHHC - Temperature

DYNASTY Temperatures 80 TC2 TC1 TC1 Cooler Temperature (°C) 0 0 TC2 ТС3 -TC4 GV2 g 20 GO1 TC4 TC3 0.5 1.5 2.5 1 2 0 3 $\times 10^4$ Time (s) **eDYNASTY** Temperatures 50 TS1 TS2 TS1 Cooler -TS2 TS5 TS3 -TS4 TS5 Ϋ́ 20 TS3 TS4 0.5 1.5 2 2.5 0 1 3 $\times 10^4$ Time (s)

- eDYNASTY flow counter-clockwise ; DYNASTY flow clockwise
- Heat exchanger in counter-current flow configuration

VHHC – Coupled VS nonCoupled DYNASTY

$$DT(TC_i) = TC_{i,(Coupled)} - TC_{i,(nonCoupled)}$$

HHHC – Mass Flow

HHHC - Temperatures

- eDYNASTY flow counter-clockwise ; DYNASTY flow clockwise
- Heat exchanger in counter-current flow configuration

HHHC – Coupled VS nonCoupled DYNASTY

 $DT(TC_i) = TC_{i,(Coupled)} - TC_{i,(nonCoupled)}$

Conclusions and Future Works

- Main outcomes:
 - Similarities in the mass flow rate evolution between the coupled and the uncoupled DYNASTY facility (especially for VHHC).
 - Non-negligible influence of the secondary loop on the primary loop temperatures during the heating transient (higher influence the higher the primary temperatures are -> relevant for DH!)
- Future works
 - Full experimental analysis with insulated facilities
 - Different working fluid (propylene glycol)
 - Different transient simulations (power spikes)
 - Effect of the fan on the coupled loops dynamics

O186POLITECNICO DI MILANO Young Molten Salt Reactor Conference Lecco, 06-08/06/2022

Thank you for your attention

G.Benzoni, <u>C.Introini</u>, S.Lorenzi, A.Cammi

Welander Wave Packet Flow

Formation of hot and cold "fluid packets" which are amplified when passing through the heat source or the heat sink, respectively

Hot Wave Packet Example (DYNASTY)

- Formation of hot wave packet when the heaters are turned on
- Motion of the hot fluid packet in the system from heater outlet (TC4) to heater inlet (TC3)

VHHC (SX) DYNASTY Only – Mass Flow

GV1 fan at 0% GV1 fan at 25% Mass Flow Rate (g/s) 0 01 02 02 0 40 Mass Flow Rate (g/s) 20 0 TC1 TC2 -20 Cooler -40 0.5 1.5 2.5 0.5 1.5 2.5 0 2 0 1 2 1 GV1 <u>GV2</u> $imes 10^4$ $imes 10^4$ Time (s) Time (s) GV1 fan at 50% GV1 fan at 75% Mass Flow Rate (g/s) Mass Flow Rate (g/s) 20 G01 TC4 тсз 0 -20 -40 0.5 1.5 2 2.5 0.5 1.5 2.5 0 2 1 0 1 $imes 10^4$ $\times 10^4$ Time (s) Time (s)

VHHC (SX) DYNASTY Only – Temperatures

HHHC DYNASTY Only – Mass Flow

HHHC DYNASTY Only - Temperatures

