Calculation of reactivity insertion in a generation IV Molten Salt Reactor

Le Meute Thibault, Bertrand Frédéric, Merle Elsa, Seiler Nathalie, Heuer Daniel
Table of content

- **Context**
 - Presentation of the transient
 - Presentation of the criterion

- **Characterization of the criterion**
 - Dilatability sensitivity
 - Doppler sensitivity

- **Chained transient**
 - Dilatability sensitivity
 - Doppler variation

- **Conclusions and perspectives**
Context

- Reactor specifications
 - Liquid fuel
 - Circulating fuel

- Power generation reactor (3 GW) isogenerator
 - Th/U, fluoride salt (TMFR)
 - U/Pu, chloride salt (PMCR)

- Study of hypothetical reactivity insertion accidents
 - Lead to a power peak
 - Increase of the salt temperature

- Objectives:
 - Feedback on reactor design
 - Volume of the expansion tank
 - Draining upper time
Non-compressible phenomenology (MOSAICS)

- Non-compressible phase
 - Neutrons precursors transport
 - Draining
 - Triggering by overflow
 - \(\sim 100 \text{ s} \)

Start of the accident

Degraded state

- Beginning of the reactivity insertion
- Recompacktion by the bubbles evacuation

Nominal operation

Reactivity insertion

Power increase

Temperature increase

- Doppler effect
- Density effect

Salt dilatation

Drainning not triggered

Overflow: Triggering of the drain
Compressible phenomenology (COCCINELLE)

- Compressible phase
 - Increase of the temperature => Increase of pressure
 - Doppler neutronic feedback almost alone
 - Density when salt goes out of the core
 - Inertial phase when vaporization occurs

Nominal operation

Start of the accident

Degraded state

- Beginning of the reactivity insertion
- Recompaction by the bubbles evacuation

Reactivity insertion

Power increase

Temperature increase

Compressible phase

- Increase of the temperature
 => Increase of pressure

Doppler effect

Reactivity drop

Temperature and pressure increase

If pressure is too high

Mechanical damages on the vessel

Acoustic phase

Return of pressure wave

P > Psat
No vaporisation

P < Psat
Vaporisation

Mechanical damages on the expansion tank and/or the vessel

Inertial phase

Fuel salt
Vaporized fuel salt
Gas in the expansion tank
Reprocessing gas
Compressible criterion

- In order to chain both the calculations tools, a criterion has been developed.

- Flow is incompressible if:
 \[
 \frac{\delta \rho}{\rho} \ll 1
 \]

- In MOSAICS, the incompressible hypothesis is considered as wrong if:
 \[
 \frac{\delta P}{Q c^2} > 0.01
 \]

 \[
 \Rightarrow \frac{1}{Q c^2} \left| \frac{\alpha}{\beta} \right| \frac{dT}{dt} t_c > 0.01
 \]

- This criterion is calculated at each time step in MOSAICS.
Characterisation of the criterion
Objective

- The compressible phase is not easy to model
 - Often need a different calculation tool
 - Increase a lot transient calculation time
 - Need more calculation resources to reach the same fidelity than incompressible CFD calculations

- Characterize the developed criterion (MOSAICS alone)
 - What kind of reactivity insertion leads to a compressible phase
 - What reactor characteristic changes the behavior of the core
Objective

Two kinds of reactivity transients are studied:

- Ramp/Step
- The maximum value of the criterion calculated will be interesting
 - If the maximum is below the trigger: Does not lead to compressible
 - If the maximum is higher: Lead to a compressible phase
- This will permit to understand in what kind of transient the compressible phase have to be model
- After this characterization, compressible transient have to be performed to understand the differences in the transient
Results of reactivity insertion, dilatability sensitivity

- Calculation in the fluoride version of the MSFR reactor

- Step reactivity
 - All the maximums of criterion calculated are above 0.01
 - Increase the dilatability increase the max value

- Ramp reactivity →
 - Low power, higher value
 - Only for more than 1000 pcm in 0.1 s at low power
Results of reactivity insertion, dilatability sensitivity

- Calculation in the chloride version of the MSFR reactor

- All the maximums of criterion calculated are above 0.01

- Increase the dilatability increase the max value

Ramp reactivity →

- Low power, higher value

- Only for more than 600 pcm in 0.1 s at low power
The calculations show that:

- Steps: the maximal value does not depend on the core power of the core
- Ramps: The lower the core’s power, the higher is the maximum value of the criterion
- At low power, it’s easier to have a compressible phase during a ramp reactivity transient

Differences between the Fluoride and the Chloride:

- For the same power, the maximal value of the criterion is higher in the Chloride than in the Fluoride version
- In both cases, the speed of sound is set at 1500 m/s
- The dilatabilities are:
 - -280 \(\cdot 10^{-6} \text{ K}^{-1} \) for the chloride
 - -210 \(\cdot 10^{-6} \text{ K}^{-1} \) for the fluoride
- The differences in the criterion probably come from these differences
Chaining of calculation tools

Le Meute Thibault, Bertrand Frédéric, Merle Elsa, Seiler Nathalie, Heuer Daniel
Objective

- Reactivity transient with and without compressible phase
 - Comparisons and estimation on how important is the compressible calculation
 - What is the impact of the compressible transient in term of safety
 - Is the transient really different with the compressible phase than without?
 - Study the impact of the criterion and the impact of the trigger value

- Variation of the core’s properties:
 - Variation of the Doppler effect value to quantify its impact on the neutronic power and the temperature increase

- Study the impact of dilatability on reactivity transient:
 - What is the impact of the dilatability on the transient?
 - How the reactor parameters impact the behavior of the transient
Results: Doppler variation

- Fluoride MSFR, at 3 GW power, 400 pcm step reactivity

- The lower the Doppler effect, the higher the neutronic power is calculated

Mean temperature →

- The Doppler effect strongly impacts the mean temperature
- The compressible phase also

Normalized power
Results: Doppler variation

- Fluoride MSFR, at 3 GW power, 400 pcm step reactivity

- The lower the Doppler effect, the higher the neutronic power is calculated

Without compressible phase

Energy difference with BE

- A variation of 1 pcm/K on the Doppler effect induce around 1 and 2 GJ of differences in the neutronic energy deposit
Results: Criterion variation

- Fluoride MSFR, at 3 GW power, 400 pcm step reactivity

Without compressible phase

- When the trigger value decreases, the maximum calculated power increases

- Mean temperature →
 - Same than the normalized power
Results: Criterion variation

- **Fluoride MSFR, at 3 GW power, 400 pcm step reactivity**

 - When the trigger value decreases, the maximum calculated power increases.

 ![Graph showing normalized power](image)

 Compressible phase trigger value
 - 0.01
 - 0.015
 - 0.001
 - MOSAICS

 ![Graph showing energy difference with BE](image)

 Compressible phase trigger value
 - 0.015
 - 0.001

Energy difference with BE

- When the trigger is higher, 0.5 GJ are missed in the compressible phase and if the trigger is lower, less energy is deposited in the salt.
Discussion

- Reactivity transient with and without compressible phase
 - As expected, the neutronic power and the temperature increases are higher during the compressible phase than on a full incompressible calculation.

- Variation of the core’s properties:
 - When the Doppler effect decrease, maximum neutronic power and temperature increases are larger
Conclusions and Perspectives
Conclusion and perspectives

- The work on chaining MOSAICS and COCCINELLE is on a good way, some work still have to be done:
 - Chaining for ramp reactivity insertion has not been performed
 - Some questions about the vaporization are still studied

- Characterization of criterion:
 - The behavior of the core is different under ramp and step reactivity transients
 - The lower the power of the core, the more probable a reactivity transient will lead to a compressible phase
 - Step reactivity is not realistic
 - Compressible transient is not always important to model

- Transients with both of the calculation tools:
 - The compressibility is important for the presented calculation
 - The value of the trigger is important but the impact is not as strong as the Doppler effect for example
Thank you for listening
Differences between chloride and fluoride salt

Neutronic feedback:

<table>
<thead>
<tr>
<th>Feed-back</th>
<th>U/Pu - Cl</th>
<th>Th/U - F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doppler [pcm.K(^{-1})]</td>
<td>-0.6</td>
<td>-4.0</td>
</tr>
<tr>
<td>Density [pcm.m(^3).kg(^{-1})]</td>
<td>8.6</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Thermodynamic properties:

- These values are estimations and can vary a lot with experiment & concept

<table>
<thead>
<tr>
<th>Properties</th>
<th>U/Pu - Cl</th>
<th>Th/U - F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density [kg.m(^{-3})]</td>
<td>2771.7</td>
<td>4122.2</td>
</tr>
<tr>
<td>Heat capacity (Cp) [J.K(^{-1}).kg(^{-1})]</td>
<td>630.7</td>
<td>1602.3</td>
</tr>
<tr>
<td>Volume core [m(^3)]</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>Volume heat capacity [MJ.K(^{-1}).m(^3)]</td>
<td>1.7</td>
<td>17.0</td>
</tr>
<tr>
<td>Thermal intertia [MJ.K(^{-1})]</td>
<td>52.4</td>
<td>59.4</td>
</tr>
</tbody>
</table>
Compressible transition criterion
Compressible criterion

- Thanks to physicals considerations, the compressible transition criterion have been modified.

- The criterion is calculated into 2 steps:
 - Estimation of a pressure increase
 - Calculation of the criterion
 - \(\frac{\delta P}{\rho c^2} \ll 1 \)
 - \(P \): Pressure
 - \(\rho \): Mean density
 - \(c \): Speed of sound ~ 1500 m/s
 - This is a Mach number: \(v = \frac{\delta P}{\rho c} \)
 - The flow become compressible when \(\frac{\delta P}{\rho c^2} \ll 1 \) is not verified:
 - \(\frac{\delta P}{\rho c^2} > 0.01 \)

- The way to estimate \(\delta P \) changed
The modified criterion is calculated with the following pressure estimation:

\[\delta P = \frac{\alpha}{\beta} \frac{dT}{dt} t_c \]

- \(\frac{dT}{dt} \): Maximum temperature variation
- \(\alpha \): Dilatability
- \(\beta \): Compressibility
- \(t_c \): Characteristic time

- Come from evolution of pressure rise at fixed volume

Here, \(t_c \) is the characteristic time of the physical phenomena.

\[t_c = \frac{L_{\text{core}}}{c_{\text{sound}}} \]

- The temperature derivative for the calculation is the highest temperature derivative calculate in the whole core.
Now the evolution of the criterion follow the evolution of the power:
- Seems more physical

In this calculation, the criterion is not crossed