CFD simulations of the Molten Salt Fast Reactor

DE LA RECHERCHE À L'INDUSTRIE

François MARTIN

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Cea The Molten Salt Fast Reactor

- Total volume of salt : 18m³
- Power: 3 GWth ; Temperature: 600-750°C
- Salt : fluoride (LiF-ThF₄) ; Spectrum : fast ; Cycle : ²³³U / ²³²Th
- Turbulent flow (Re $\approx 1.10^6$, mean velocity $\approx 2 \text{ m.s}^{-1}$)

Cea Scheme of the CEA coupled tool

Cea TrioCFD modeling of the MSFR

APOLLO3-TrioCFD tool aims to be the reference CEA code :

 \rightarrow The finest thermalhydraulics modeling is sought.

Different turbulence models were compared :

- RANS (classical and realizable k- ϵ).
- LES.

Different geometries were compared :

- One sector $(1/16^{th})$ of the MSFR.
- A quarter of the MSFR.
- The full core.

Heat exchanger modeling :

- A reference heat exchanger is still to be defined for the MSFR.
- The impact of the meshing of the HX was studied.

Cea Turbulence model : RANS

Navier Stokes equations :

It is the momentum conservation of a constant-properties, newtonian fluid :

$$\frac{D\mathbf{U}}{D\mathbf{t}} = -\frac{1}{\rho}\nabla\mathbf{p} + \nu\nabla^{2}\mathbf{U} (1)$$

For high Reynolds numbers, chaotic solutions \rightarrow need to simplify the equation.

RANS modeling :

We split the velocity in two parts, a mean velocity and a random one.

$$\mathbf{U} = \langle \mathbf{U} \rangle + \mathbf{u}$$

We solve the Navier Stokes equations for the mean part only :

$$\left\langle \frac{DU_{j}}{Dt} \right\rangle = \frac{\partial \langle U_{j} \rangle}{\partial t} + \frac{\partial \langle U_{i}U_{j} \rangle}{\partial x_{i}} = \frac{\partial \langle U_{j} \rangle}{\partial t} + \langle U_{i} \rangle \frac{\partial \langle U_{j} \rangle}{\partial x_{i}} + \frac{\partial \langle uiuj \rangle}{\partial x_{i}} (2)$$

Cea Turbulence model : RANS

We define the mean particular derivative :

$$\frac{\overline{D}}{\overline{D}t} = \frac{\partial}{\partial t} + \langle \mathbf{U} \rangle. \nabla$$

We then rewrite (2) as :

$$\frac{\overline{D}\langle \mathbf{U}_{j}\rangle}{\overline{D}\mathbf{t}} = \left\langle \frac{D\mathbf{U}_{j}}{D\mathbf{t}} \right\rangle - \frac{\partial\langle uiuj\rangle}{\partial x_{i}}$$

By injecting the mean of (1), we obtain the Reynolds equations :

$$\frac{\overline{D}\langle \mathbf{U}_{j}\rangle}{\overline{D}\mathbf{t}} = -\frac{1}{\rho}\frac{\partial\langle p\rangle}{\partial x_{j}} + \nu\nabla^{2}\langle \mathbf{U}_{j}\rangle - \frac{\partial\langle uiuj\rangle}{\partial x_{i}}$$
(3)

Closure problem with the Reynolds stress tensor : we need a closure relation. Many models exist : Reynolds stress models, k-ε, mixing length,...

Cea Turbulence model : LES

Turbulent energy cascade :

Cea Turbulence model : LES

LES modeling :

We split the velocity in two parts, a filtered velocity and a residual one.

 $\mathbf{U}=\overline{\mathbf{U}}+\mathbf{u}$

The number of modes simulated (the filter width) depends on the mesh size.

Momentum conservation for the filtered velocity :

$$\frac{\partial \overline{U}_{j}}{\partial t} + \frac{\partial \overline{U}_{i}\overline{U}_{j}}{\partial x_{i}} = \nu \frac{\partial^{2} \overline{U}_{j}}{\partial x_{i} \partial x_{i}} - \frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_{j}}$$

We have a closure problem with the residual stress tensor :

- Turbulent viscosity hypothesis.
- Different models for the turbulent viscosity (Smagorinsky, WALE).

LES meshing resolution : LES Index of Quality Cea

Cea RANS vs LES simulations : instantaneous temperature

Commissariat à l'énergie atomique et aux énergies alternatives

29 août 2022

Cea RANS vs LES simulations : mean velocity field

Commissariat à l'énergie atomique et aux énergies alternatives

Cea Geometry considered : LES mean velocity

Cea Heat exchanger modeling : RANS mean velocity

Cea Conclusion and future work

MSFR design :

- The MSFR geometry was optimised with RANS simulations.
- Big discrepencies between the RANS and LES velocity fields.
- \rightarrow Need to re-optimize the geometry with LES simulations ?
- \rightarrow The heat exchanger design will impact the injection zone.

Future work :

- wall-resolved LES : implicit or hybrid time schemes.
- Coupling : impact on the mean temperature and the temperature fluctuations.
- Coupled RANS simulations : comparison with SAMOSAFER partners.

Thank you very much !

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Cea Meshing and computational cost

```
Our meshes :
```

```
25mm (RANS) :
```

```
Sector : 428 000 tetras ; Full core : 6.85 e6 tetras
10mm (LES) :
Sector : 5.25 e6 tetras ; Quarter : 21 e6 tetras ; Full core : 84 e6
tetras
```

Computational cost :

RANS : implicit time scheme, 48h on 300 threads.

LES : quarter core, 10 seconds of simulation \rightarrow 48h on 2000 threads (TOPAZE cluster).