

Evaluation of NICKel-based Materials for MSR applications: ENICKMA irradiation project Young MSR conference, 6-8 June 2022 Lecco Italy

F. Naziris, <u>naziris@nrg.eu</u> 2.4852/22.238218

Nuclear. For life.

EU DuC= E001

Goods labeled with an EU DuC (European Dual-use Codification) not equal to 'N' are subject to European and national export authorization when exported from the EU and may be subject to national export authorization when exported to another EU country as well. Even without an EU DuC, or with EU DuC 'N', authorization may be required due to the final destination and purpose for which the goods are to be used. No rights may be derived from the specified EU DuC or absence of an EU DuC.

NRG Introduction

NRG's MSR research program

Research Context

Objectives

Experimental methodology

Preliminary results

Outlook

Questions

Nuclear. For life.

NRG in a nutshell

More patients helped every day

ੴ[₩]ᠿ 700

Motivated employees. Every day they make the world a little better 265

Reactor production days for research and medicines

Nuclear. For Life. Our R&D contributes to a healthier life, in both medicine as climate-neutral energy

- Main business areas: (a) Advancing Nuclear Medicine and
 (b) Ensuring Nuclear Performance
- Global market leader in producing medical isotopes
- Nuclear research and innovation projects → help industry as well as government for safe, reliable and efficient use of nuclear technology.
- Important nuclear infrastructure: (a) High Flux Reactor and (b) Hot Cell Laboratories in Petten.

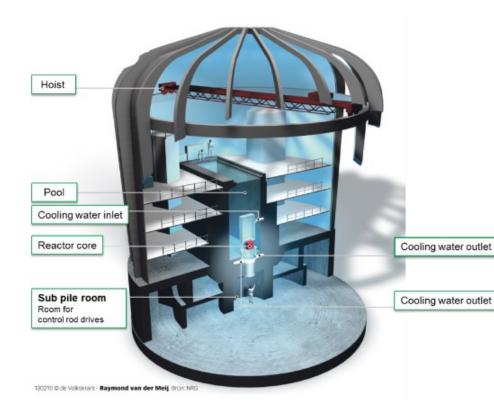
FUELS & MATERIALS IRRADIATIONS

Material Irradiation Services

- Assess material behavior under accelerated irradiation conditions
- Low and high dose irradiation capacity
- Decades of experience with wide range of structural materials
- Extensive post-irradiation analysis capabilities in Hot Cell Laboratory

Fuel Irradiation Services

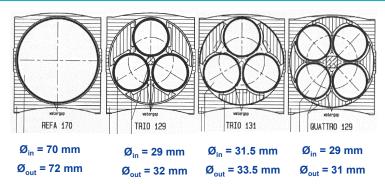
- · Fuel testing and qualification for license applications
- New and existing concepts

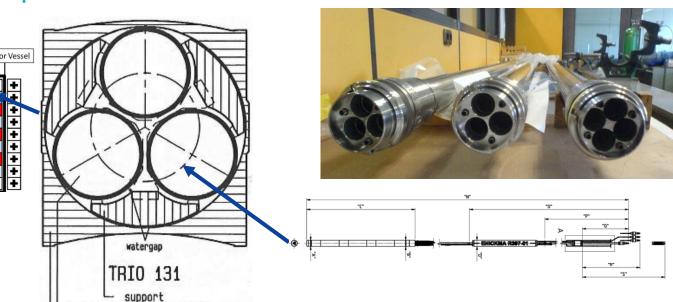

Molten Salt Reactor Research Program

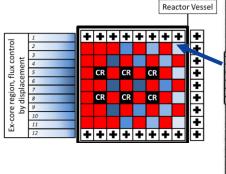
- MSR tailored irradiations
- Broad and ambitious public R&D and dedicated research for MSR developers
- From concept design to irradiation experiments

The High Flux Reactor

- High flux
- 45 MW thermal power
- Stable and constant flux profile in each irradiation position
- Main applications
 - Isotope production
 - Nuclear energy irradiation services
 - **R&D**
 - **31 operation days per irradiation cycle, 9 cycles a year**

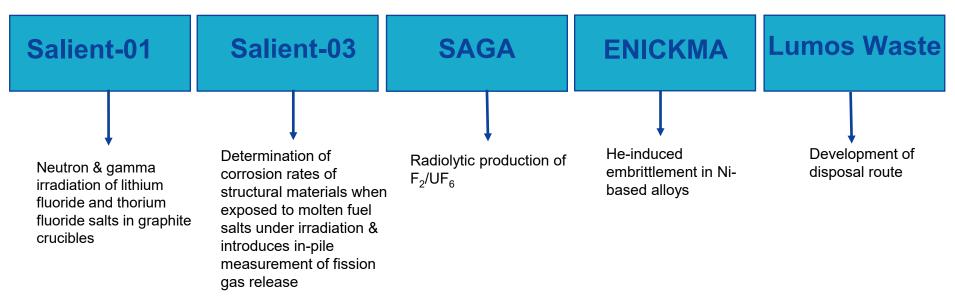



HFR Standard Irradiation Rigs


thimble Ø1/Øo = 31.5/33,5mm

-fillerelement 74.2 (Øi = 75mm)

- Outside is water-cooled, inside gas swept (mixtures of helium, neon, nitrogen)
- Instrumentation throughputs (temperature, presssure, ...)
- Customisation possible



NRG

Current Program

- Focus on irradiation technology
- Focus on generic topics (not specific for certain concepts)
- Ambitious program with limited funding, program open for partnering

ENICKMA: Evaluation of NICKel-based Materials

Structural materials \rightarrow exposed to extreme conditions (radiation, corrosive environment, high temperature)

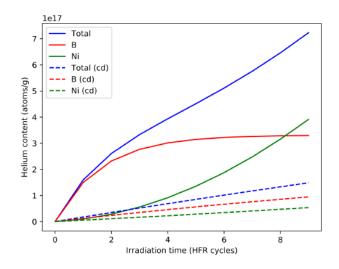
Material selection: mechanical properties should be retained and dimensional stability under both operation and abnormal conditions \rightarrow investigation of material processes at micro and macroscale

Various MSR designs: consider Ni-based alloys for MSR applications (excellent high-temp. properties and corrosion resistance)

Irradiation data of Ni-based alloys limited \rightarrow quantification based on time, temperature, energy spectrum, flux and composition

ENICKMA project

- Study irradiation properties of candidate structural materials for MSR applications
- Study the material degradation behavior under neutron irradiation and the underlying mechanism
- Publish useful material data and give insight for future MSR design



Radiation-Induced Embrittlement in Ni-based alloys

- For Ni-based alloys, **He-induced embrittlement** believed to be the main **degradation mechanism**
- He is produced with the fast neutron n, α reactions of ${}^{58}\text{Ni+n}_f \rightarrow {}^{55}\text{Fe} + {}^{4}\text{He}, {}^{60}\text{Ni+n}_f \rightarrow {}^{57}\text{Fe} + {}^{4}\text{He}$
- For thermal neutrons, He could be produced through the following reactions: $^{10}B + n \rightarrow ^{7}Li + ^{4}He$ $^{58}Ni + n \rightarrow ^{59}Ni + \gamma, ^{59}Ni + n \rightarrow ^{56}Fe + ^{4}He$

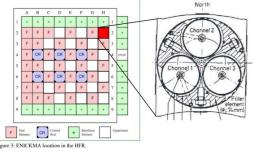
In the process of transmutation of Ni by thermal neutron, it requires production of ⁵⁹Ni first and results in an incubation time for helium production.

He bubbles at grain boundaries \rightarrow embrittlement

Experimental method

Irradiation

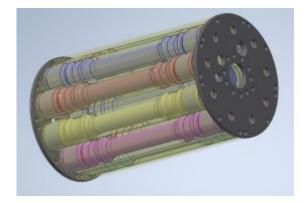
- 100 tensile and LCF samples
- Irradiation duration 9 HFR cycles
- Position H2, leg 1 of TRIO
- Up to 1E21 n/cm² thermal, 3E21 n/cm² fast (up to 50 appm helium , >1 dpa expected)
- Irradiation temperature 650°C-750°C

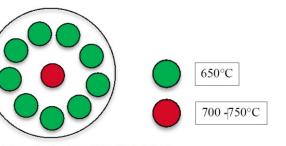

Oven tests

- Thermal annealing for 1 month at 800 °C
- Thermal annealing for 5 months at 650 °C
- Thermal annealing for 9 months at 650 °C

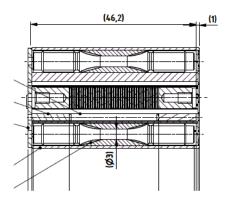
Planned tests

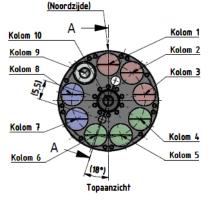
- Mechanical tests (tensile, LCF, SPT...) on as-received, annealed & irradiated specimens
- Correlation mechanical properties & microstructural changes (OM, SEM, TEM)





Irradiation facility


• 10 drums, each containing 10 specimen



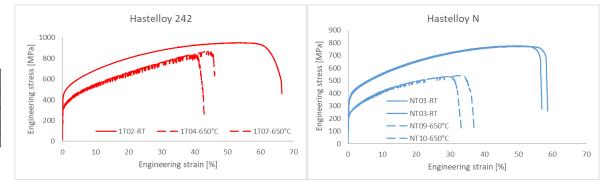
13

NRG

14

Preliminary results

Test Matrix

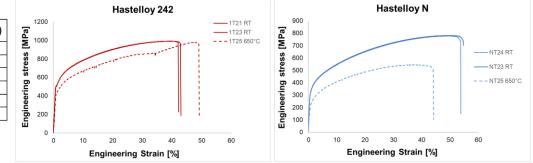

	As-ree	ceived	Anneale °C for 1	ed at 800 month
	RT	650 °C	RT	650 °C
Hastelloy N	2	2	2	1
Hastelloy 242	1	2	2	1

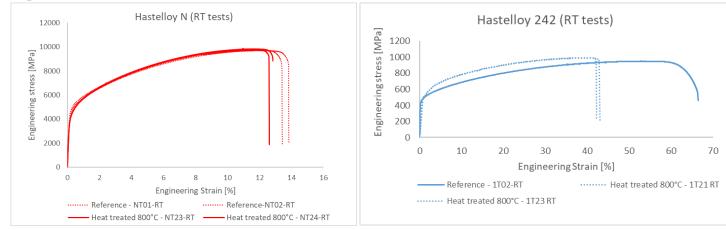
		Weight % Main Alloying Elements										
Alloy	AI	Co	Cr	Fe	Mn	Мо	Nb	Ni	Si	Ti	v	С
Hastelloy N	0.29	0.078	7.10	3.60	0.46	17.10	0.070	Bal.	0.31	0.002	0.005	0.059
Hastelloy 242	0.17	0.026	8.00	1.16	0.26	25.80	<0.001	Bal.	<0.02	0.001	0.002	0.002

Chemical compositions

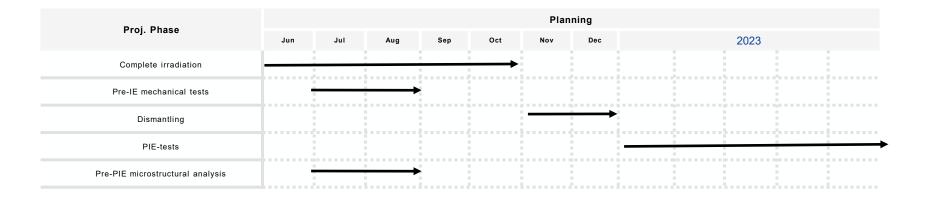
As-received condition

Material	Test	0.2%	UTS	UE	TE
	temperature [°C]	YS [MPa]	[MPa]	[%]	[%]
Hastelloy N	RT	335	774	49	57,7
	650	224	534	31,2	35
Hastelloy 242	RT	451	950	52,6	66,2
	650	328	851	41,8	44,2


A serrated flow behaviour is observed for the high temperature tests, due to dynamic interaction between mobile dislocations and diffusion solute atoms during plastic deformation


NRG

Tensile Test – 800 °C annealing


Material	Sample ID	ample ID Test temperature		UTS (MPa)	UE (%)	TE (%)
Hastelloy 242	1T21	RT	503	991	38,2	42,8
Hastelloy 242	1T23	RT	511	991	37,8	41,9
Hastelloy 242	1T25	650 °C	419	977	45,6	48,8
Hastelloy N	NT23	RT	311	781	47,3	53,8
Hastelloy N	NT24	RT	304	777	48,2	53,6
Hastelloy N	NT25	650 °C	192	544	35,7	44,0

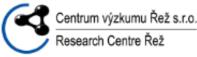
Comparison to as-received condition

Future work and planning

Questions?

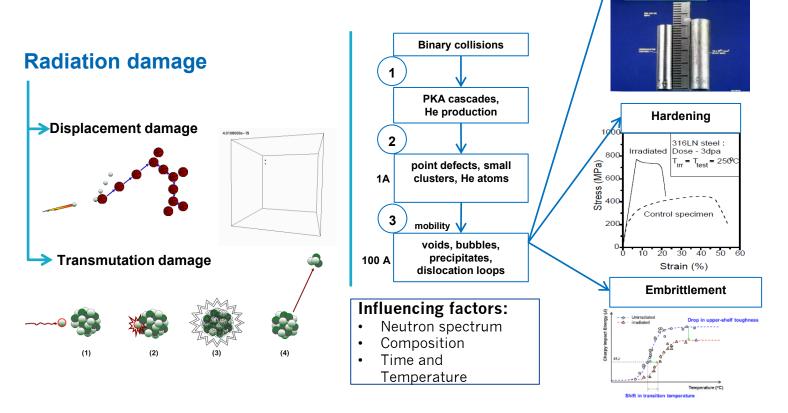
Thank you for your attention

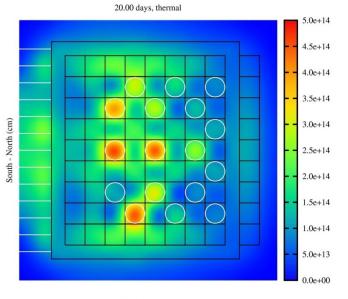
18


Dutch program overview

- Sponsored by the Dutch Ministry of Economic Affairs as part of a broader Nuclear Energy R&D program.
- In collaborations with <u>JRC, TU Delft and CV Rez</u>, which provide complementary competences
- Program objective: provide meaningful contribution to MSR technology development.
 - Obtain operational experience
 - Improve safety
 - Support materials development
 - Tackle waste issues
 - Integral Demonstration

Ministry of Economic Affairs of the Netherlands




Damage mechanisms - Embrittlement

19 Slide from KIVI presentation, 16-04-2021 M. Kolluri

NRG

Swelling

West - East (cm)

Figure 2-4: Cross sectional view of the HFR (thermal flux)

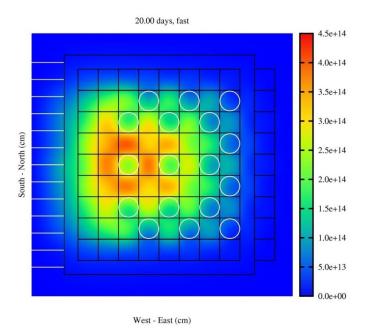


Figure 2-5: Cross sectional view of the HFR (fast flux)

Table 2 The effect of thermal neutron dose on the Total elongation of Hastelloy X tensile tested at $\sim 1.1 \times 10^{-4} \, s^{-1}$.

T _{test}	Thermal Neutron	Calculated Helium	Total
(K)	Dose (n/cm ²)	(appm)	Elongation (%)
	NA	0.04	30
973	NA	0.4	20
	NA	4	8
	2.7x10 ¹⁷	0.004	50
1173	2.2x10 ¹⁸	0.04	40
-	2.4x10 ¹⁹	0.4	20
	4.3x10 ²⁰	5	7
-	2.0x10 ²¹	40	5
	$2.7 \mathrm{x10}^{17}$	0.004	40
1273	2.2x10 ¹⁸	0.04	30
	2.4x10 ¹⁹	0.4	6
	4.3x10 ²⁰	5	4

K. Watanabe, Y. Ogawa, M. Kikuchi and T. Kondo, Ductility Loss of Neutron-Irradiated Hastelloy-X at Elevated Temperatures, JAERI Research Report JAERI-M 8807 (1980)

Axial boundaries (cm)		Thermal	Fast	То	tal
Lower	Upper	E<0.625 eV	E>0.1 MeV	No Cd	With Cd
+20	+30	8.71E+20	1.30E+21	3.47E+21	2.60E+21
+10	+20	1.28E+21	2.18E+21	5.61E+21	4.34E+21
0	+10	1.68E+21	2.78E+21	7.24E+21	5.56E+21
-10	0	1.84E+21	2.99E+21	7.83E+21	5.99E+21
-20	-10	1.69E+21	2.73E+21	7.15E+21	5.47E+21
-30	-20	1.41E+21	1.95E+21	5.30E+21	3.89E+21

Table 2: Neutron fluence (n cm⁻²) after 9 HFR cycles averaged over four dummy QUATTRO legs in H4.

Table 5 He production in the material after 9 cycles of irradiation in HFR H4

boundari es (cm)			No Cd			H content (appm)		
Lower	Upper	Total	Boron	Nickel	Total	Boron	Nickel	
20	30	4.07E+17	3.06E+17	1.01E+17	6.75E+16	4.49E+16	2.22E+16	39.69
10	20	5.29E+17	3.23E+17	2.04E+17	1.09E+17	7.02E+16	3.80E+16	51.58
0	10	6.62E+17	3.29E+17	3.32E+17	1.38E+17	8.80E+16	4.93E+16	64.55
-10	0	7.23E+17	3.29E+17	3.91E+17	1.49E+17	9.44E+16	5.35E+16	70.50
-20	-10	6.63E+17	3.29E+17	3.32E+17	1.36E+17	8.67E+16	4.88E+16	64.65
-30	-20	5.62E+17	3.26E+17	2.34E+17	9.96E+16	6.48E+16	3.43E+16	54.80

Table 3: Helium produced in the Ni-based alloy (atoms/g) after irradiation for 9 cycles. Total helium, and helium produced from only the boron and nickel is shown.

Axial boun	daries (cm)		No Cd		With Cd			
Lower	Upper	Total	Boron	Nickel	Total	Boron	Nicke.	
+20	+30	4.07E+17	3.06E+17	1.01E+17	6.75E+16	4.49E+16	2.22E+16	
+10	+20	5.29E+17	3.23E+17	2.04E+17	1.09E+17	7.02E+16	3.80E+16	
0	+10	6.62E+17	3.29E+17	3.32E+17	1.38E+17	8.80E+16	4.93E+16	
-10	0	7.23E+17	3.29E+17	3.91E+17	1.49E+17	9.44E+16	5.35E+16	
-20	-10	6.63E+17	3.29E+17	3.32E+17	1.36E+17	8.67E+16	4.88E+16	
-30	-20	5.62E+17	3.26E+17	2.34E+17	9.96E+16	6.48E+16	3.43E+16	