Acid/Base Behavior and Buffering Capacity in Molten Fluoride Salts

Politecnico di Milano, Lecco campus June 6-8, 2022

Haley Williams Raluca O. Scarlat

Nicholas Winner Prof. Raluca O. Prof. Mark Asta UCB, MSE UCB, MSE PhD Student

future lanl.gov/projects/future

Scarlat UCB, NE

Haley Williams UCB, NE PhD Student

Ruben Cho UCB, MSE Undergrad Rsrchr

U.S. Department of Energy

Solvoacidity is a measure of a melt's degree of dissociation.

Acidity, redox, and salt structure are related.

The current understanding: melts of higher basicity favor oxidation.

• Since the oxidized form is (charge) stabilized by the electron pair offered by the base [5]

The corrosivity of basic melts was demonstrated in the MSRE.

TABLE 2.2.5. EQUILIBRIUM CONCENTRATIONS OF CHROMIUM FLUORIDES WITH ALKALI FLUORIDE AND ZrF₄-BEARING FUEL MIXTURES

	Chromium Concentration (ppm)	
	In NaF•KF•LiF•UF ₄	In No F-Zr F ₄ -UF ₄
Experimental results for melt treated with pure chromium, (Cr) = 1.0*	more fluorobasic	more fluoroacidic
At 600°C	1100	2400
At 800°C	2600	2550
Results calculated for equilibration of melt with Inconel, (Cr) = 0.16*		
At 600°C	7 10	1320
At 800°C	1660	1400
*Concentration of chromium in mole fraction.		
	ΔT thermodynamic driver of Inconel	
	for corrosion is ~12x higher for	
)RNL 2106, pg 98	fluoroba	sic melt Berkele

haley_williams@berkeley.edu | salt.nuc.berkeley.edu

[6]

AIMD study modeled melts of various pFs and how they solvate Cr.

- 2KF-NaF
- 2LiF-BeF₂
- 3LiF-AIF₃
- With & without Cr⁰, Cr²⁺, Cr³⁺

(2LiF-BeF2 with Cr²⁺)

[2] Winner, Nicholas, et al. "Ab-initio simulation studies of chromium solvation in molten fluoride salts." J Molec Lig (2021)

The mechanism of Cr solvation is affected by pF.

pF depends on characterization of acidic or basic behavior.

High brF and/or capacity for undercoordination (multiple CNs) → acid/base buffering capacity

Ability to produce dsF in response to consumption of dsF by solvation of Cr cation

Experimental studies to probe how diffusivity changes with pF:

 Measurement of diffusivity of Cr²⁺, Cr³⁺ electrochemically and changes with oxidation state, temperature, prev studies

Cr³⁺ expected to diffuse more slowly (forms stronger associates).

Possible stronger influence of pF on D(Cr³⁺) since it is more likely solvated by dsF.

Fig. 8. Self-diffusion coefficients of solute Cr ions in flibe and flinak at 973 K. Error bars represent one sigma standard error of the mean.

Molten 2KF-NaF in the furnace with electrodes
Berkeley

[7] Nam, H. O., et al. "First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute." *JNucMat* (2014)

In summary,

- Chromium in various oxidation states can incorporate into the polymer network of acidic molten salts.
 - Higher activity of F⁻ is not necessary to stabilize corrosion products.
- Acid-base buffering capacity:
 - is a melt's ability to produce dsF in response to consumption of dsF by a (chromium) cation.
 - is determined by brF and ucC.
 - describes the likelihood of pF to change, which is relevant to corrosivity.

In summary,

- Chromium in various oxidation states can incorporate into the polymer network of acidic molten salts.
 - Higher activity of F⁻ is not necessary to stabilize corrosion products.
- Acid-base buffering capacity:
 - is a melt's ability to produce dsF in response to consumption of dsF by a (chromium) cation.
 - is determined by brF and ucC.
 - describes the likelihood of pF to change, which is relevant to corrosivity.

Questions?

