

CAPSTONE PROJECT

Thermochemical modelling of LiF-CsF-ThF mixtures for MSFR application

J. Narvaez^{a,b}, <u>G. Zullo</u>^a ^a Politecnico di Milano, Department of Energy, Nuclear Engineering Division, Milan, Italy ^b CNRS, Grenoble, France

Young Molten Salt Reactor (YMSR) conference, June 6-8, 2022, Lecco.

Framework & scope of the work

This project is centred on the **use of the equilibrium thermodynamics software library Thermochimica**, available on GitHub, with the JRC molten salt database. Thermochimica determines a unique combination of phases and their compositions at thermochemical equilibrium.

Molten Salt Fast Reactor (MSFR) application:

 \rightarrow study the **behaviour of fluoride salts** considered as fuel for the MSFR interacting with **fission products** (e.g., Cs).

- Reference salt for the MSR: binary eutectic mixture LiF_4 with UF_4 or PuF_3 as fissile and UF_3 for redox control.
- Fission products formed during irradiation accumulate in the fuel mixture and influence its properties (e.g., melting behaviour, solubility limit, vapor pressure).

The considered system (Li, Cs, Th//F) contains cations (Li⁺, Cs⁺, Th⁴⁺) and the anion F⁻.

Task #1: Effects of F hyper/hypo-stoichiometry

		Thermochimica output			
System composition		System properties			
System composition		Temperature (K)	900		
0.6 moles LiF 0.2 moles CsF 0.2 moles ThF		Pressure (atm)		1	
		System component	<u>Mass (mol)</u>	Chemical potential (J/mol)	
		Th	C	0.32 -59597.63	
		Cs	C	0.32 -103312.9	
		F		1.6 -575096.3	
(1.6 total moles F)			C	.92638.69	
(Integral Gibbs energy (J)		-1061220	
at 900 K and 1 atm.		Entropy (J/K)		198.909	
		Enthalpy (J)		-882200	
		Functional norm (/)		452.514 1 65888E-06	
		# of stable pure condensed phases		2	
		# of stable solution phases		2	
1.539 mol of salt solution	1.6 moles of F	0.851 moles of (53.19 %)	solid	LiF, CsF, ThF ₄ , ThCs ₃ F ₇	
		0.749 moles of s (46.81%)	olution	LiF, CsF, ThF ₄	

Task #1: Effects of F hyper/hypo-stoichiometry

		Thermochimica output					
System composition		System properties					
System composition		Temperature (K)	900				
0.6 moles LiF		Pressure (atm)		1			
0.2 moles CsF 0.2 moles ThF (1.65 total moles F = + 3.125 %) at 900 K and 1 atm.		System component	<u>Mass (mol)</u>	Chemical potential (J/mol)			
		Th	0.3	-59597.63			
		Cs	0.3	-103312.9			
		F	1.6	-575096.3			
		Li	0.9	-92638.69			
		Integral Gibbs energy (J)		-1089970			
		Entropy (J/K)		194.955			
		Enthalpy (J)		-914514			
		Heat capacity (J/K)		288.457			
		# of stable pure condensed phases		1.049242-00			
		# of stable solution phases		2			
	_			-			
		1.253 moles of	solid	LiF, CsF, ThF ₄ ,			
0.85187 mol of salt solution (-55.35 %)	1.65 moles of F	(75.92%)		InCs ₃ F ₇			
		0.397 moles of s	olution	LiF, CsF, ThF₄			

(27.08%)

Task #1: Effects of F hyper/hypo-stoichiometry

		Thermochimica output			
System composition		System properties			
System composition		Temperature (K)	900		
0.6 moles LiF		Pressure (atm)		1	
0.2 moles CsF		<u>System component</u>	<u>Mass (mol)</u>	Chemical potential (J/mol)	
0.2 moles ThE		Th	0.3	-59597.63	
		Cs	0.3	-102163.4	
		F	1.	-575091.0	
(1.55 total moles F =		Li	0.9	-92025.97	
- 3.125 %)		Integral Gibbs energy (J)		-1032460	
		Entropy (J/K)		200.547	
		Enthalpy (J)		-851965	
at 900 K and 1 atm.		Heat capacity (J/K)			
		# of stable pure condensed phases		2.45319E-00	
		# of stable solution phases		2	
		" of stable solution phases		-	
2.0042 mol of salt solution (+ 30.23%)	1.55 moles of F	0.6 moles of s (38.77 %)	olid	LiF, CsF, ThF ₄	
		0.95 moles of so (61.23 %)	lution	LiF, CsF, ThF ₄	

Task #2: Vapor pressures

- Low vapor pressures at operative temperature.
- Vaporization behaviour of caesium (volatile fission product) during accidental scenarios.

Task #3: Binary Phase Diagrams (Th-F) at 1 atm

Task #3: Binary Phase Diagrams (Li-F) at 1 atm

Task #3: Binary Phase Diagrams (Cs-F) at 1 atm

Task #3: Binary Phase Diagrams (Li-Cs) at 1 atm

Conclusions

The software Thermochimica can be used to assess the behaviour of fluoride salt of interest for application in the MSFR, interacting with fission products (e.g., Cs).

- Effects of the fluorine hyper/hypo-stoichiometry \rightarrow chemical control.
- The interaction between fission products and fuel mixture affects the fuel properties (e.g., melting behaviour, solubility limit, vapor pressure) → impact of the fission products on the fuel properties of interest.
- Effect of temperature / pressure variations (e.g., assessment against potential accidental scenarios) on the fuel mixture state → stability phase diagram assessment

Thank you for your kind attention

The software Thermochimica can be used to assess the behaviour of fluoride salt of interest for application in the MSFR, interacting with fission products (e.g., Cs).

- Effects of the fluorine hyper/hypo-stoichiometry \rightarrow chemical control.
- The interaction between fission products and fuel mixture affects the fuel properties (e.g., melting behaviour, solubility limit, vapor pressure) → impact of the fission products on the fuel properties of interest.
- Effect of temperature / pressure variations (e.g., assessment against potential accidental scenarios) on the fuel mixture state → stability phase diagram assessment