

Overview of the Molten Salt Reactor Program

Dr. Patricia PAVIET November 29^{th,} 2023 Avignon, France SAMOSAFER final meeting

Molten Salt Reactor

PNNL-SA-192514

THIS IS A MOTIVATING TIME

Adapted From Dr. Shannon Bragg-Sitton, INL – GIF webinar presented on 19 April 2022 "Role of Nuclear Energy in decreasing CO_2 Emission"

2

ENERGY Office of NUCLEAR ENERGY

Two Advanced Reactor Designs Received DOE-NE Risk Reduction Award

Southern Molten Chloride Reactor Experiment

Southern Company Services, based in Birmingham AL, is designing, constructing and operating the Molten Chloride Reactor Experiment to demonstrate the high-burnup capabilities of Southern's liquid saltfueled Molten Salt Reactor. Total award over 7 years: \$113M (DOE Share: \$90.4M)

Hermes Reduced-Scale Test Reactor

Siting at the East Tennessee Technology Park in Oak Ridge, TN. Hermes is expected to lead to the development of Kairos Power's commercial-scale KP-FHR which uses TRISO fuel form combined with a low-pressure fluoride salt coolant. Total award for 7 years :\$629 M (DOE share: \$303M)

Liquid Fueled MSR - Generic Fuel Cycle

Mission

Vision: The DOE-NE MSR campaign serves as the hub for efficiently and effectively addressing, in partnership with other stakeholders, the technology challenges for MSRs to enter the commercial market.

ational Laborator

Laboratories

Thermophysical Properties of Molten Salts

							Twin	Calvet Drop Calorimetry		
Property Phase Transition Temperatures	Differential Scanning Calorimeter					Produced enthalpy da ΔH _{ds} = ΔH _{bc} + ΔH _o		nsuldion incore	pie 9 9 9 9	
Heat Capacity	DSC (Ratio and Modulated techniques	Drop Calorimeter						- plug - bubbling tube - solvent		
Solubility of FPs	Saturation Method	Press. Drop Method				Meat content Reac	Heat content Reaction Phase change			
Vapor Pressure	Transpiration	TGA/DTA				_				
Density / Volume Expansion Coefficients	Hydrostatic Method	X-ray dilatometer	Neutron Radiography	Pycnometer	Push Rod Dilatometr	l y				
Viscosity	Rotating Spindle	X-ray Falling Ball	Dynamic Neutron Radiography	Rheometer	Viscosity	r: X-Ray Falling Ball				
Thermal Conductivity/ Diffusivity	Laser Flash Analysis	Variable Gap			Reference of the second			•••••		
Emissivity	Pyrometer				A.	25		6		
Surface Tension	Hydrostatic Method	Contact Angle				Vanish Argen Tan Law				
Enthalpy of Fusion	DSC	Drop Calorimeter				bal descent				
Melting Point	DSC	Thermomechanic al Analysis								

Molten Salt Thermal Properties Database

MSTDB-TC Fluoride Systems Content: Be-Ca-Ce-Cs-K-La-Li-Na-Ni-Nd-Pu-Rb-Th-U-F

	Pseudo-terna	ry	and higher o	rde	er systems
•	BeF2-LiF-NaF	•	CaF2-LiF-KF	•	LiF-NaF-RbF
•	BeF2-LiF-PuF3	•	CaF2-LiF-ThF4	•	LiF-NaF-ThF4
	BeF2-LiF-ThF4	•	CeF3-LiF-ThF4	•	LiF-NaF-UF4
	BeF2-LiF-UF4	•	CsF-LaF3-LiF	•	LiF-PuF3-ThF4
	BeF2-NaF-PuF3	•	CsF-LiF-KF	•	LiF-PuF3-UF4
	BeF2-NaF-ThF4	•	CsF-LiF-PuF3	•	LiF-ThF4-CaF2
	BeF2-NaF-UF4	•	LaF3-LiF-NaF	•	LiF-NaF-BeF2-
	BeF2-ThF4-UF4	•	LIE-KE-NaE		ThF4-PuF3-UF
	CaF2-KF-NaF	•	LiF-KF-RbF	•	LiF-NaF-BeF2-
	CaF2-LaF3-LiF	•	LiF-NaF-CeF3		KF-PuF3-UF4
•	CaF2-LaF3-NaF	•	LiF-NaF-PuF3	•	LiF-NaF-KF-

MSTDB-TC Chloride Systems Content: Al-Ca-Ce-Cs-Fe-K-Li-Mq-Na-Ni-Pu-Rb-U-Cl

UNIVERSITY OF ĦĪĴĹĨĦ SOUTH CAROLINA

MSTDB-TP Expansion Efforts

MSTDB-TP has undergone 2 major expansion efforts:

- 1.0 to 2.0 (68 entries to 273 entries)
- 2.0 to 2.1 (273 entries to 448 entries)

These expansions incorporate replacements of old datasets as well

- E.g. recent literature has suggested UCI3 and relevant mixtures has a lower thermal expansion coefficient than previously understood
- MSTDB-TP is being expanded for later releases
 - This includes new pseudo-binary and higher order system data that exist in literature and need evaluated
 - MSTDB-TP will also include new data of new systems as it is published

MSTDB-TP is intending on including surface tension data in the future

 There is a significant body of literature already evaluated and tabulated

Courtesy Dianne Ezell and Tony Birri, ORNL

Pure [.]	Salt	Me	easu	reme	ents
		ρ	μ	κ	c_p
	AlCl3	1	1	0	1
	BeCl2	1	0	0	0
	BeF2	1	1	1	1
	CaCl2	1	1	1	1
	CaF2	1	1	1	1
	GdCl3	1	1	0	0
	GdF3	0	0	0	0
	KCl	1	1	1	1
	KF	1	1	1	1
	LaCl3	1	1	0	- 0
2	LaF3	1	0	0	1
	LiCl	1	1	1	1
ai	LiF	1	1	1	1
	MgCl2	1	1	1	1
	MgF2	1	1	1	0
	NaCl	1	1	1	1
r	NaF	1	1	1	1
	NdCl3	1	1	0	0
	NdF3	0	0	0	1
	NpCl3	0	0	0	0
	NpF3	0	0	0	0
	PuCl3	0	0	0	1
	PuF3	0	0	0	1
	SrCl2	1	1	1	- 0
	SrF2	1	1	1	0
	ThCl4	1	0	0	- 0
	ThF4	1	0	0	0
	UCl3	1	0	0	1
	UCl4	1	0	0	0
	UF3	0	0	0	1
	UF4	1	1	0	1
	ZrCl4	1	1	0	0
NII	ZrF4	1	0	0	0

Available @ mstdb.ornl.gov

Ternary:

Salt	Measurements			
	ρ	μ	κ	c_p
KCl-LiCl-NaCl	4	0	0	0
LiCl-NaCl-AlCl3	10	10	0	0
LiF-BeF2-ThF4	3	2	0	0
LiF-BeF2-ZrF4	1	0	0	0
LiF-NaF-BeF2	1	1	0	0
LiF-NaF-KF	1	1	1	1
LiF-BeF2-UF4	36	36	0	0
NaF-BeF2-UF4	79	71	0	0
NaF-KF-BeF2	1	1	0	0
NaF-KF-MgCl2	1	0	0	0
NaF-KF-UF4	1	1	1	1
NaF-KF-ZrF4	1	1	0	0
NaF-LiF-BeF2	4	4	0	0
NaF-LiF-ZrF4	10	1	0	1
NaF-ZrF4-UF4	5	3	2	3
RbF-ZrF4-UF4	2	2	1	1

Quaternary:

Salt	Me	easu	rem	ents
	ρ	μ	κ	c_p
LiF-BeF2-UF4-ThF4	1	1	-0	- 0
LiF-BeF2-ZrF4-UF4	1	0	0	0
NaF-LiF-BeF2-UF4	1	1	0	0
NaF-LiF-KF-UF4	2	2	1	1
NaF-LiF-ZrF4-UF4	1	1	0	1

MSTDB-TC Ver. 3 Released in May 2023

- Significant increase in content plus a number of systems revised/updated
- New values/models generated from our measurements together with reported properties

	New additions for Ver. 3 over Ver. 2 in bold			New Content
-	Fluorides	Chloride	lodides	BeF ₂ and ZrF ₄ Reciprocal Iodides
Alkali metals	LiF, NaF, KF, RbF, CsF	LiCl, NaCl, KCl, RbCl, CsCl	Lil, Nal, Kl, Csl	 LiF-BeF₂ LiF-Csl KI-Csl NaF-BeF₂ LiF-KI NaI-Lil
Alkaline earth metal	BeF ₂ , CaF ₂ , SrF₂, BaF₂	MgCl ₂ , CaCl ₂	Bel ₂ , Mgl ₂	 KF-BeF₂ LiF-Nal LiI-KI CsF-BeF₂ KI-CsF Nal-KI
Transition metals	NiF ₂ , CrF₃	CrCl ₂ , CrCl ₃ , FeCl ₂ , FeCl ₃ , NiCl ₂	-	 BeF₂-UF₄ KF-Csl Nal-Csl BeF₂-ThF₄ NaF-Kl Lil-Csl
Other metals	YF ₃ , ZrF ₄	AICI ₃	-	• BeF_2 -ZrF ₄ • KF-Nal • LiF-ZrF ₄ • NaF-Csl
Lanthanides	LaF ₃ , CeF ₃ , NdF ₃ , PrF₃	CeCl ₃ , LaCl₃	-	Higher Order
Actinides	ThF_4, UF_3, UF_4	UCl ₃ , UCl ₄ , PuCl₃	UI ₃ , UI ₄	LIF-LII-Csl LIF-NaF-Nal LIF-KF-Csl
Pseudo- binary	53 systems (v.2) 70 systems (v.3)	60 systems (v.2) 70 systems (v.3)	10 systems (v.2) 30 systems (v.3)	 LiF-LiI-Nal Nal-NaF-KF NaF-KF-CsI LiF-LiI-KI KF-KI-NaF LiF-KF-CsF-CsI
Pseudo- ternary	25 systems (v.2) 30 systems (v.3)	22 systems (v.2) 27 systems (v.3)	None (v.2) 15 systems (v.3)	 LIF-CSF-CSI NaF-NaI-KF CSI-LIF-NaF-KF LIF-KF-KI LIF-NaF-NaI LIF-KF-CSI MgCl₂-KCI-UCl₂

Courtesy Prof. Ted Besmann, USC

Office of NUCLEAR ENERGY

U.S. DEPARTMENT OF

9

MSTDB-TC Thermochemical (Experimental) Data Needs for the MSR Program

Selective data needs for current system assessments

- LIF-NIF₂ system: Need enthalpy of mixing, Cp for intermediate compound
- NaF-NiF₂ system: Need enthalpy of mixing, Cp for intermediate compounds
- KF--NiF₂ system: Need enthalpy of mixing, Cp for intermediate compounds
- PuCl₃ systems with LiCl, NaCl, KCl, MgCl₂: MSTDB-TC improved with phase equilibria, enthalpies of mixing, Cp for the intermediate compounds

System information and/or assessments needed for new reciprocal salt models

- UI-UF_{3,4}
- UI-UCI_{3,4}
- Bel-BeF₂

Phase Equilibria for Be-containing Systems Requiring Experimental Determination

- BeF₂-CrF₂, BeF₂-FeF₂, and BeF₂-NiF₂
- LiF-BeF₂-CrF₂, LiF-BeF₂-FeF₂, and LiF-BeF₂-NiF₂

Courtesy Prof. Ted Besmann, USC MSR Campaign Review Meeting 2-4 May 2023

Technology Development and Demonstration

Multi-faceted approach to investigation of technologies for MSR off-gas systems

Monitoring of Molten Salt Systems

Measurement Type	Sensor Type	Measurement Type	Sensor Type
Salt Composition (species concentrations)	Salt Sampler Electrochemical Raman UV Vis LIBS	Salt Redox Potential	Dynamic reference electrode Optical Spectroscopy (UV Vis, raman Thermodynamic reference electrodes)
Isotopics Radiation	Gamma spectroscopy Alpha spectroscopy	Volume (Liquid/Level)	Tracer dilution Ultrasound
<mark>Isotopic Ratio</mark>	LIBS QQQ-ICPMS		Contact Depth sensor Radar
Pressure	Pressure Transducer (NaK filled etc)	Particulate Monitoring	Electrical Resistance Tomography Ultrasonics
Flow Rate	Thermal flow meter Ultrasonic flow meter Activation flow meter	Off gas monitoring	Optical LIBS
Corrosion/Structura I materials	Magnetic susceptibility Meter Ultrasound	Under salt viewing	Video
	UV Vis/Raman (Cr, Fe, Ni)	Vibrations/accelerations Valve position monitoring	accelerometers Position monitoring
Temperature	Thermocouples Fiber optics	In reactor video monitoring	Camera (CCD, CMOS…)
Adapted from N. Hoyt MSR fuel Cycle Works	presentation, "Fuel Salt Characterization a shop 19-21 SEP 2023, ANL	nd Qualification"	U.S. DEPARTMENT OF Office of NUCLEAR ENERGY

Laser-induced breakdown spectroscopy (LIBS) can provide an elemental fingerprint in real-time

A high energy density laser pulse ablates a sample to form a micro plasma at T~10.000 K

The plasma light is collected with a gated spectrometer to measure an elemental signature

New LIBS setup needed to facilitate MOF size and

In-On-line Monitoring – Molecular Approach

Sensors directly in or on the process In situ and real-time analysis of a given process or system

Optical Spectroscopy:

Provides chemical informationHighly mature technologySimplistic integrationVersatile

Fundamental characterization Efficient process design Safe and cost-effective deployment

Courtesy Amanda Lines and Sam Bryan, PNNL

Testing Probe Materials in LSTL

Before incorporation into salt loop

Salt loop testing

- Probe barrel swaged into loop
- No visual degradation after testing

After incorporation into salt loop

Online monitoring of molten salt chemistry

Argonne has demonstrated several monitoring technologies with sensors development for salt composition, redox state, salt level, etc.

Courtesy N. Hoyt, ANL

What is the Liquid Salt Test Loop? (LSTL) at ORNL

Largest F salt loop in DOE

Salt	NaF-KF-LiF (FLiNaK)
Operating Temp.	700°C
Flow rate	≤4.5 kg/s (136 lpm)
Operating pressure	Near atmospheric
Primary Materials	Inconel 600
Loop volume	80 liters
Power	200 kW induction ~20 kW trace
Primary piping ID	2.67 cm (1.05 in.)
Initial operation	Summer 2016

- PNNL Raman probe exposure
- ANL E-Chem sensors operation
- ORNL gas-space particle capture
- Thermal hydraulic system performance future goal
- Specie transport test
 - He, 4% H₂, and Kr injection
 - Monitoring of off-gas
 - NEUP Virginia Tech: flow meter
 - Small business: system PLC monitor

Data output for species transport code modelling:

Adsorbe

- ORNL SAM model
- SNL MELCOR model

Courtesy Robb, ORNL

Facility to Alleviate Salt Technology Risks (FASTR)

Largest CI salt loop in DOE

Salt	NaCI-KCI-MgCl ₂
Operating Temp.	725°C
Flow rate	≤7.0 kg/s (228 lpm)
Operating pressure	Near atmospheric
Primary Materials	C-276 & Inconel 600
Loop volume	154 liters
Power	400 kW Main Heater ~71 kW trace
Primary piping ID	5.20 cm (2.05 in.)
Initial operation	December 2023

Compared to LSTL, FASTR is: 2x higher capacity pump 2x larger salt volume 2x larger pipe 2x thermocouples 2x main heating capacity 3x trace heating capacity 4x number of salt flanges

Development support by DOE-EERE SETO CPS 33875

Robb, Kevin, and Kappes, Ethan. Facility to Alleviate Salt Technology Risks (FASTR): Commissioning Update. United States: ORNL/TM-2023/2846, 2023. Web. doi:10.2172/1960689. Robb, Kevin, Kappes, Ethan, and Mulligan, Padhraic L. Facility to Alleviate Salt Technology Risks (FASTR): Design Report. United States: ORNL/TM-2022/2803, 2022. Web. doi:10.2172/1906574.

Chlorine Isotopes Separation System for Chloride MSR

WHY

- ³⁵Cl (76% of natural chlorine) has large neutron capture cross section
- ³⁶Cl activation product is long-lived (301,000 years) and energetic (709 keV) beta emitter
- Highly soluble in water

CAPABILITIES DEVELOPMENT at PNNL

- Thermal diffusion isotope separation system for enrichment of ³⁷Cl. FY24 will upgrade to produce >99% ³⁷Cl enrichment
- Multi-physics model exists to optimize and inform facility designs at multiple scales
- Precise Cl isotope QQQ-ICP-MS method with HCl_(L) – no chemistry needed and >1% accuracy on ³⁷Cl/³⁵Cl ratio

19

U.S. DEPARTMENT OF Office of NUCLEAR ENERGY

Courtesy Bruce McNamara, PNNL

Tritium Generation in MSRs

Tritium generated by neutron reactions with Li, Be, and F.

⁶Li (7.5%) large thermal cross-section. ⁷Li (92.5%) moderate cross-section in fast-spectrum.

⁹Be and ¹⁹F tritium in fast-spectrum.

Tritium generation rates in *fluoride* salt reactors are similar to CANDU reactors.

CANDUs produce world's supply of tritium for peaceful purposes.

Tritium is a potential valuable byproduct of MSRs.

Reactor Type	Tritium Formation Rate 1000 MWe (Ci/day) [1]
MSR	2400*
CANDU	2700
HTGR	50
PWR	2

*MSBR enriched in ⁷Li (99.992%).

Sabharwall, P.; Schmutz, H.; Stoots, C.; Griffith, G. Tritium Production and Permeation in High-Temperature Reactor Systems;, 2013. <u>https://doi.org/10.1115/HT2013-17036</u>. Andrews, Hunter B., et al. "Review of molten salt reactor off-gas management considerations." Nucl. Eng. Des. 385 (2021): 111529.

U.S. DEPARTMENT OF Office of NUCLEAR ENERGY

Molten Salt Tritium Transport Experiment

- MSTTE is a semi-integral tritium transport experiment for flowing fluoride salt systems.
- Location: Safety and Tritium Applied Research facility
- Objectives:
 - (1) Safety code validation data.
 - (2) Test stand for tritium control technology.
- Major Equipment:
 - Copenhagen Atomics Salt Loop: salt tank, pump, & flow meter
 - External Test Section: hydrogen injection, permeation, & plenum
- Phased approach
 - **Phase I:** FLiNaK and D₂
 - Phase II: FLiBe and D₂
 - Phase III: FLiBe and T₂

Courtesy Thomas Fuerst, INL

21

S. DEPARTMENT OF Office of NUCLEAR ENERGY

Molten Salt Spill Accident Research at ANL and SNL

Spreading and Heat **Transfer Tests**

- · Leading edge vs. time
- Covered area vs. time
- Temperature of steel and salt surfaces vs. time

Splashing and Aerosol **Generation Tests**

· Compositions and sizes of splatter and aerosols generated by splashing

Conduct

individual

scale

process tests

at laboratory

initiated

Flowing and Freezing in Tubing Tests

- Temperature of tubing surface during salt draining
- Locations where tubes of different diameter plug with salt

Corrosion Tests in Molten Salt

 Electrochemical corrosion rates at fixed redox, salt chemistry, and temperature

Conduct

scale

integrated

process tests

at laboratory

initiated

Modeling and Simulation

MSR SPECIES TRACKING ANALYSIS USING MELCOR AND NEAMS TOOLS

• NEAMS toolkit used to accurately resolve multiphysics analysis in MSRs for gaseous speciation and corrosion of structural materials due to thermochemical changes in the fuel-salt.

- Support MSR campaign missions through MELCOR modeling and analysis
- Identify and collaboratively resolve MSR mechanistic source term knowledge gaps
- Develop engineering level models for mechanistic source term capability gaps

MSR Species Tracking Analysis using MELCOR and NEAMS Tools

Molten Salt Reactor (MSR) Campaign

Prepared for U.S. Department of Energy Molten Salt Reactor Campaign L.I. Albright, D.L. Luxat (SNL) S.A. Walker, M.E. Tano, A. Abou-Jaoude (NL) August 31, 2022 Report INL/RPT-22.02640

Advanced Materials

Salt and Materials Interaction

Supporting MSR development by studying 316H flowing salt compatibility at high temperature (off-normal)

Graphite-Salt Study

Study of salt intrusion in graphite and chemical interactions that may affect graphite's structural or physical properties

Test Articles Fabrication Completed – Both Types Follow the Same Basic Process

2021 ORNL FLiBe TCL

MSR Campaign Reports

- Melissa Rose et al., "Effect of Cs and I on Thermophysical Properties of Molten Salts", M3AT-23AN0705011M3AT, SEP 2023
- Melissa Rose et al. "Workshop-Uncertainty in MS Property Measurements and Predictions: Sent milestone report ANL/CFCT-23/32 t", M3AT-23AN0705013, SEP 2023
- Trou Askin et al "Progress Report on Identification and Resolution of Gaps in Mechanistic Source Term Modeling for Molten Salt Reactors", SAND-2023-10090, SEP 2023
- Bruce McNamara, "Chlorine isotopes separations, mid-year report, M4AT-23PN1101043, PNNL -34297, May 2023
- Bruce Pint, et al. "The Dissolution of Cr and Fe at 850C in FLiNaK and FLiBe, M3RD-23OR0603032, ORNL/SPR-2023/3170, SEP 2023
- Bruce Pint et al., "Measuring the Dissolution of Cr and Fe at 550°C-750°C in FLiNaK and FLiBe, ORNL/SPR-2023/3169, SEP 2023
- Ting-Leung Sam et al, " Development of Surveillance Test Articles with Reduced Dimensions and Material Volumes to Support MSR Materials Degradation Management, INL /RPT-23-74540, SEP 2023
- Mark Messner, "Modeling support for the development of material surveillance specimens and procedures", NL-ART-268, SEP 2023
- Thomas Hartmann, , "Modeling of Austenitic MSR Alloys with Supporting Experimental Data-Part 2: Diffusion controlled corrosion in austenitic MSR containment alloys ,PNNL-34802, SEP 2023
- Sara Thomas "Integrated Process Testing of MSR Salt Spill Accidents, ANL/CFCT-23/25 SEP 2023
- Hunter Andrews, "Establishing Isotopic Measurement Capabilities using Laser-Induced Breakdown Spectroscopy for the Molten Salt Reactor Campaign" (ORNL/TM-2023/3067. SEP 2023
- Kevin Robb et al. "Molten Salt Loop testing of Sensors and Off-Gas Components: FY23 Progress", ORNL/LTR-2023/3087, SEP 2023
- Nathaniel Hoyt, Assessment of salt sensor Performance, , M3RD-23AN0602061 , SEP 2023
- Danny Bottenus et al, "Molten Salt Reactor Radioisotopes Separation by Isotachophoresis", PNNL-34997, SEP 2023
- Anne Campbell, "Be2C synthesis, properties, and ion-beam irradiation damage characterization ", ORNL/TM-2023/3011, AUG 2023
- Joanna McFarlane et al., Design of Instrumentation for Noble Gas Transport in LSTL Needed for Model Development ", ORNL/TM-2023/3138, SEP 2023
- Walker et al., "Application of NEAMS Multiphysics Framework for Species Tracking in Molten Salt Reactors", INL/RPT-23-74376, (2023).

New MSR Program Website

Information on: **MSTDB**

MSR Campaign Review Meeting

Publications/Reports

GIF webinars

Molten Salt Reactor Р G

The DOE-NE MSR program serves as the hub for addressing the technology challenges for MSRs to enter the commercial market.

Mission: Develop the technological foundations to enable MSRs for safe and economical operations while maintaining a high level of proliferation 1) MSRs can provide a substantial portion of the energy needed for the US to achieve net zero carbon emissions by 2050 and FY2022 Integrated Research Projects Awards A molten salt reactor (MSR) is any nuclear reactor that employs liquid halide salt to perform a significant function in-

core. MSRs include a broad spectrum of design options including:

- · liquid- and solid-fueled variants,
- · chloride- and fluoride-based fuel salts,
- · thermal, fast, time variant, and spatially varying neutron spectra,
- · wide range of reactor power scales,
- · intensive, minimal, or inherent fuel processing,
- · multiple different primary system configurations, and compatibility with

- · Reduction, Mitigation, and Disposal Strategies for the Graphite Waste of High Tempe
- · Bridging the gap between experiments and modeling to improve design of molten s

NRL Projects Awarded CINR FY22 Funding

· Integrated Effects of Irradiation and Flibe Salt on Fuel Pebble and Structural Graphite Reactors

FY 2022 CINR MSR AWARDS

- · A Molten Salt Community Framework for Predictive Modeling of Critical Characterist
- · Understanding the Interfacial Structure of the Molten Chloride Salts by in-situ Electro Soft X-ray Scattering (RSoXS)
- Nuclear Material Accountancy During Disposal and Reprocessing of Molten Salt Read
- · Optical Basicity Determination of MoltenFluoride Salts and its Influence on Structural

FY22 SciDAC Award

Los Alamos National Laboratory to lead study of molten-salt nuclear reactor material

MSR Annual Campaign Review

- May 2-4, 2023
- 2022 • 2021

MSR Course

Molten Salt Thermal Properties Database (MSTDB)

- University of South Carolina College of Engineering and Computing -- MSTDB
- Oak Ridge National Laboratory -- MSTDB

Gen IV International **Forum - Webinars**

DOWNLOAD

RESENTATION

DOWNLOAD RESENTATION

26 July 2023

Watch WEBCAS'

25 January 2023

Watch

WEBCAST

https://www.gen-4.org/gif/jcms/c_84279/webinars

U.S. DEPARTMENT OF Office of NUCLEAR ENERGY

27

Thank you

Patricia.Paviet@pnnl.gov 509-372-5983