SAM SAFER

WP2 Experiments and Simulations on MSR fuel systems

Final Project meeting Avignon 28.11.2023

Nuclear. For life.

JOINT RESEARCH CENTRE

1

3 Keynote Lectures

Nikolas Scuro - PhD Student of Ontario Tech., with stays at Polimi at JRC (Remote presentation) Coupling of Thermodynamics with Multi-physics - Fluorination and overheating scenario

Thomas Dumaire - PhD Student of TUD, with work at JRC Thermodynamics of Fuel Salt with corrosion products - Experiments and Simulations

Stefano Lorenzi - Professor at Polimi Multi-Physics simulations with focus on 5M particle dynamics

5 OntarioTech Engineering & Applied Science

WP2 - Task 2.1 Final Results Coupling OpenFOAM and Thermochimica for MSR

Final Meeting & Exploitation Workshop November 28-30, 2023, Avignon, France N. L. Scuro, O. Beneš, M. H. A. Piro

Outline

- **WP2 Task 2.1**
- **Coupling Method**
- **Two-Way Coupling Demonstration Problems (#1 and #2)**
- □ Verification and Validation (V&V)
- **Conclusions**
- □ Acknowledgments

WP2 - Task 2.1

"To develop new **computational capabilities** to simulate **phase transformations** and **chemically reacting dynamic flows** involving **molten salts**"

Note: This project is not a predictive tool for industry... Yet!

5

Coupling Method

1st **Demonstration Problem**

Fluorination Process $UF_4 + F_2 \rightarrow UF_6$

Demonstration Problem: Molten Salt Fluorination Process $(UF_4 + F_2 \rightarrow UF_6)$

FTIR 7%F/Ar NaF Trap G \bigcirc Off-gas 20%F/Ar NaF Adsorber Molten salt HPGe Furnace 0 Other nuclides 0 Fluorinator UF_4 0 UF₆ **Fluorination-sorption step**

8

Fluorination Process

Qiang Dou and Qingnuan Li et al. (2022). Journal of Fluorine Chemistry, 261, 110016.

Demonstration Problem: Molten Salt Fluorination Process $(UF_4 + F_2 \rightarrow UF_6)$

Case 1: Highest viscosity

Fluorination time: 663 min

Fluorination time: 105 min

Case 1: lowest viscosity

#2 TWC Demonstration Problem: UF₄ removal rate

N.L. Scuro, O. Benes, M.H.A. Piro, "Two-Way Coupling of OpenFOAM and Thermochimica for Fluoride Volatility Processes in Molten Salt Reactor Applications" [Under Review by Annals of Nuclear Energy], (2023).

2nd Demonstration Problem:

Molten Salt Fast Reactor

Normal Operation Conditions and Overheating Scenarios

Journal of Nuclear Materials, 501, 238-252.

N. L. Scuro, O. Beneš, S. Lorenzi, M. Krstovic, S. Krepel, M.H.A. Piro (under review).

Gaseous Species accumulated in 1000 s

Species NOC		Overheating	
[kg]	$3 \mathrm{GW}_{\mathrm{th}}$	$15 \mathrm{GW}_{\mathrm{th}}$	
Xe	1.011E-05	5.056E-05	
FLi	1.311E-11	9.029E-08	
F2Li2	5.146E-12	2.310E-08	
F3Li3	7.686E-13	3.045E-09	
ThF4	1.149E-13	8.338E-09	
UF4	2.962E-13	5.667E-09	
UF3	1.148E-19	2.124E-13	
CsF	1.444E-12	2.140E-09	
Cs2F2	8.957E-17	2.007E-13	
Cs2	1.463E-27	2.507E-21	
LaF3	2.296E-18	1.266E-12	
F2	1.032E-36	4.676E-26	
F	2.449E-22	1.892E-15	

N. L. Scuro, O. Beneš, S. Lorenzi, M. Krstovic, S. Krepel, M.H.A. Piro (under review).

Numerical Verification

* N. L. Scuro, *et al*, (2023) "D2.2 – Description of thermodynamic database implemented in Thermochimica", SAMOSAFER, EURATOM, 847527

 Benchmark report of Thermochimica vs CactSage" for the SAMOSAFER was made in Fall 2021*

CFD model itself follows the best guidelines^{1,2} to achieve numerical convergence (mesh sensitivity, track residuals, appropriate numerical schemes, turbulence model, etc.)

¹ Oberkampf, W. L., & Trucano, T. G. (2002). Verification and validation in CFD. *Progress in aerospace sciences*, *38* (3), 209-272

² Mahaffy, J. et. al (2015). No. NEA-CSNI-R--2014-11, OECD

Numerical Validation

- All thermodynamic calculations are based on experimental inputs.
- OTU has been corroborating with JRC on the development of salt systems:
- KI-CsI, CsI-Nal, Nal-CsI, NaF-CsI, KF-CsI, MgCl₂-SrCl₂

Conclusions

- > Can provide **time required** for molten salt reactions (i.e., fluorination)
- > Can provide how thermophysical properties can affect reactions (i.e., viscosity)
- > Can provide how much and and which rate fission products are retained or released
- > Can provide inputs for UF4/UF3 corrosion buffer lost

Acknowledgements

- This research was undertaken, in part, thanks to funding from the Canada Research Chairs program (950-231328) of the Natural Sciences and Engineering Research Council of Canada.
- To the SAMOSAFER project for the travel grant (SAMOSAFER Mobility Scheme) at PoliMi and JRC!
- I'd like to thank, A. Di Ronco (PoliMi), S. Lorenzi (PoliMi), T. Dumaire (JRC/TUD), O. Benes (JRC), Sophie Deanesi (PoliMi), Milica Krstovicfor (PSI) and Jiri Krepel (PSI) for technical discussions and support.

It was a pleasure to work at this project!

Questions and inputs are welcome!

nikolas.scuro@ontariotechu.net

SAM SAFER

SAM SAFER

Thermodynamics of Fuel Salt with corrosion products - Experiments and Simulations

T. Dumaire, O. Beneš, O. Walter, R. Konings, A.L. Smith

Final Project meeting Avignon 28.11.2023

JOINT RESEARCH CENTRE

Outline

Corrosion studies

- Chemical speciation of Cr in molten salt
- LiF-CrF₃, NaF-CrF₃, KF-CrF₃ thermodynamic assessments
- CrF₂-CrF₃ thermodynamic assessment
- CrF₂ synthesis
- LiF-CrF₂-ThF₄ thermodynamic assessment

Fission products studies

- Study case
- Impact on the fuel thermodynamical properties
- LiF-BaF₂-ZrF₄ thermodynamic assessment

Modeling method - Experimental data collection

• Phase diagram measurements: Differential Scanning Calorimetry

• Phase identification: X-ray Diffraction

SAM SAFER

LiF-NaF-KF-CrF₃ systems thermodynamic modeling

CALPHAD

SAM SAFER

Least-square minimization of the total Gibbs energy G of the system to find the thermodynamic equilibrium at given conditions (T, P, xi).

G is expressed as a linear combination of the G for all phases:

$$G(T,P,x_i) = \sum N^{\alpha} G_m^{\alpha}(T,P,x_i^{\alpha})$$

- Modified quasichemical model in quadruplet approximation
 - Formalism well-adapted to ionic liquids
 - Two sub-lattices

(Aⁿ⁺, B^{m+}, cations, ...) (F⁻, Cl⁻, anions)

Basic unit = quadruplet composed of 2 anions and 2 cations

• Optimized excess parameters linked to SNN exchange reaction $\Delta g_{AB/F} = \Delta g^{0}_{AB/F} + \sum_{i \ge 1} g^{i0}_{AB/F} \chi^{i}_{AB/F} + \sum_{j \ge 1} g^{j0}_{AB/F} \chi^{j}_{AB/F}$

LiF-NaF-KF-CrF₃ systems thermodynamic modeling

CrF₂-CrF₃ system thermodynamic modeling

CALPHAD modeling of the CrF₂-CrF₃ system

SAM SAFER [1] Dumaire, T., Konings, R. J., & Smith, A. L. (2021). Thermodynamic Assessment of the AF-CrF₃ (A= Li, Na, K) and CrF₂-CrF₃ Systems. Thermo, 1(2), 205-219

Synthesis of CrF₂

Chromium powder

 $Cr_2(COOCH_3)_4$

 NH_4CrF_3

 NH_4CrF_3 powder

 CrF_2 powder

LiF-CrF₂ system

SAM SAFER

Optimization of the thermodynamic model based on collected phase diagram data by DSC and XRD

CrF₂-ThF₄ system

SAM SAFER

 Optimization of the thermodynamic model based on collected phase diagram data by DSC and XRD

LiF-CrF₂-ThF₄ system

XRD pattern of the 0.2 LiF - 0.6 CrF_2 - 0.2 ThF₄ sample, no other compound than endmembers are identified

LiF-CrF₂-ThF₄ system

• DSC measurement performed from X(ThF4) = 0.2 to 0.7 and optimization with the first data

Pseudo-binary section on $LiF-CrF_2$ -Th F_4 system at 60 mol% of CrF_2

Delft

LiF-CrF₂-ThF₄ system

• Data from the DSC measurements and fitting on the ternary phase diagram.

Calculated composition of the fuel after 5 years operation:

Final fuel composition				
Nuclide(s)	Mol (%)			
³ Li	71.94			
⁹⁰ Th	18.14			
⁹² U	2.96			
Total	93.03			
Other compounds				
FPs 20 <z<73 6.85<="" td=""></z<73>				
Other	0.12			

- Initial fuel: LiF ThF₄ UF₄
 (77.5-19.5-3 mol%)
- Calculated in the framework of the SAMOSAFER project WP4 (PSI/TUD)
- Case study: no reprocessing

SAM	SAFER
-----	--------------

Major Fission Products (more than 0.045 mol %)			
Nuclide	Z	Mol %	Chemical state(s)
Zr	40	1.107	Fluoride – ZrF4
Xe	54	0.726	Noble gas
Мо	42	0.656	Metal
Nd	60	0.598	Fluoride – NdF3
Cs	55	0.594	Fluoride – CsF Iodide – CsI
Ce	58	0.469	Fluoride – CeF3
Sr	38	0.405	Fluoride – SrF2
Ru	44	0.259	Metal
Ва	56	0.253	Fluoride – BaF2
Y	39	0.211	Fluoride – YF3
La	57	0.209	Fluoride – LaF3
Kr	36	0.208	Noble gas
Pr	59	0.203	Fluoride – PrF3
Rb	37	0.189	Fluoride – RbF
Тс	43	0.140	Metal
Те	52	0.103	Metal
Sm	62	0.084	Fluoride – SmF3
I	53	0.065	Iodide – CsI
Rh	45	0.047	Metal
Pd	46	0.046	Metal
SUM		6.573	T.

Design: MSFR, Th fertile blanket, 3000 MW_{th}

TUDelft

Fission products mixture in fluoride fuel:

End-members	Mol %	Melting temperature
ZrF4	25.2	910 °C/1183 K
NdF3(La,Pr,Sm)	24.9	1374 °C/1647 K
CsF	12.1	703 °С/976 К
Csl	3.0	621 °C/894 K
CeF3	10.7	1460 °C/1730 K
SrF2(Ba)	15.0	1477 °С/1750 К
YF3	4.8	1387 °С/1660 К
RbF	4.3	785 °C/1068 K

• Fuels:

- LiF ThF₄ (76 24 mol%)
- LiF ThF₄ UF₄ (77.5 19.5 3 mol%)
- NaF KF UF₄ (50.4 23.2 26.4 mol%)
- Mixture of fuel + 7 mol% FPs (maximal accumulation of fission products)

SAM SAFER

Impact of fission products on the fuel salt melting temperature measured by DSC:

• Very low impact on the thermodynamic properties

36

Impact of fission products on the fuel salt vapor pressure measured by KEMS

- Total vaporization behavior of the fuels is not affected by the presence of fission products
- Overall solubility of the fission products except CsI

SAM SAFER

LiF-BaF₂, LiF-ZrF₄ and BaF₂-ZrF₄ systems modeling

LiF-BaF₂-ZrF₄ systems modeling

Acknowledgement

T. Dumaire acknowledges gratefully financial support from the Nuclear Research and Consultancy Group (NRG, Petten, Netherlands) and the SAMOSAFER project which has received funding from the Euratom research and training program 2014-2018 under grant agreement N°847527. Many thanks to the SAMOSAFER project's mobility scheme for its help during the secondment to the JRC-Karlsruhe.

Nuclear. For life.

JOINT RESEARCH CENTRE

SAM SAFER

Application of multiphysics calculations on 5M particle simulation

Stefano Lorenzi (PoliMi) SAMOSAFER Final Meeting 28 November 2023, Avignon, France

The Noble Metals Issue

- Very low solubility in the salt → behave as particles transported by the flow
- Close together on the periodic table \rightarrow grouped approach in the following
- **Deposition** on surfaces

• Bubbling system for **removal** is foreseen

Need for a Multiphysics modeling approach!

Overview of the key elements expected in the salt during normal operations. In green the fuel species, in orange the TRUs, in yellow the soluble FPs, in blue the GFPs and **in red the 5Ms**.

SAM SAFER

Modelling approach

Modelling approach

Simulation of 5M scenario

Aim: Simulation of the transport of solid FPs constituted by "noble metal" species (Mo, Rh, Ru, Pd, Tc). This should include deposition on the wall and possible precipitation-dissolution effects to the temperature transients.

Modelling assumptions:

- Chemical equilibrium constant for Van't Hoff eq
- ▶ Deposition on the wall with dep. velocity BC
- ▶ 5M clustering to minimize the computational effort

Deposition on the wall

Deposition on the wall \rightarrow "Perfect sink" wall condition

$$C_i\Big|_{\partial\Omega}=0$$

Mesh refinement down to approx. 10⁻³ m or less is needed close to walls to resolve the concentration boundary layer

Velocity deposition wall condition

$$-D_{eff}\nabla c_i \cdot \boldsymbol{n} = \gamma c_i$$

 γ is the velocity deposition (mm/s)

Deposition on the wall - BCs

Deposition on the wall - Verification

SAM SAFER

Comparison of normalized concentration profiles at different normalized lengths \hat{x} , obtained with the proposed OpenFoam model (°) and the analytical solution (–).

5M simulation: clustering

Clustering of the 5M according to their property to minimize the computational effort

- 5Ms are chemically and physically very similar
- Nuclear species show a broad range of λ , but the prevalent ones are rather slow-decaying
- One pseudo-nuclide to be considered as initial step

5M simulation

Simplified reactor zones in the employed geometry.

SAM SAFER

Bulk cell Wall cell Total wall n° cells Case size (mm) size (mm) faces 85'560 30 13034 1 2 30 5.0 159'624 13034 3 209'960 30 2.5 13034 543'244 20 1.0 28160 4 5 595'812 20 0.5 28160 4'345'352 9 0.3 133116 6

Key properties of the six meshes used for the investigation

5M simulation: FP concentration with null Dirichlet BC

5Ms particle distribution shown across an axisymmetric slice, mesh case 6. 5Ms particle concentration profiles close to the left wall along an arbitrary line.

SAM SAFER

5M simulation: FP deposition with null Dirichlet BC

5Ms particle deposition at steady state on the outer loop, inside and outside view of case 1.

SAM SAFER

5Ms particle deposition at steady state on the outer loop, inside and outside view of case 6.

d [part./m2]

2e+26

3.10e + 26

Case	Tot deposited particles	d (part./m²)	
1	2.530×10^{26}	1.07×10^{25}	
2	2.533×10^{26}	5.23×10^{24}	
3	2.530×10^{26}	9.62×10^{24}	
4	2.532×10^{26}	1.28×10^{25}	
5	2.531×10^{26}	6.60×10^{24}	
6	2.452×10^{26}	4.00×10^{24}	

5Ms particle deposition key quantities for all the six mesh cases. "d" values are sampled at the wall on the same line previously highlighted.

5M simulation: FP concentration with velocity deposition BC

SAM SAFER

What's wrong?

5M simulation: FP concentration with velocity deposition BC What's wrong? γ is not uniform inside the reactor. Make it a field!

5M simulation

What about decay heat?

- ▶ Heat from a decay event within the deposited layer accumulating on the Fuel Circuit
- Similar approach of the 5M clustering
- 5M are not the main contributors, we should include also metal particles (but some of them could be dissolved in the salt)

	ho (kg/m³)	d_p (m)	y _{tot} (-)	λ_{eff} (1/s)	Q_{eff} (W/part)
5M	$1.098\cdot 10^4$	$370.3 \cdot 10^{-12}$	0.295	$6.614 \cdot 10^{-9}$	$2.146 \cdot 10^{-21}$
Metals	$6.786 \cdot 10^4$	$436.6 \cdot 10^{-12}$	1.248	$2.336 \cdot 10^{-8}$	$9.335 \cdot 10^{-21}$

5M simulation: decay heat

5M

Conclusions

- 5M simulation: 5M concentration and deposition with clustering both with perfect sink and deposition velocity BC
- Information on rate of deposition on the structural walls + heat decay contribution
- Steady-state approach: Deposition physics is extremely low compared to the precipitation-diffusion modelling
- Coupling with ThermoChimica can provide additional information on that since it allows to accurately reproduce the chemistry (formation and physical state of the possible species)
- But there is need to improve the database of 5M with respect to the fluoride formation species

SAM SAFER