

UGA Université **Grenoble Alpes**

A closed fuel cycle option using the MSFR concept with chloride salts and the U/Pu cycle SAM SAFER

H. Pitois¹, D. Heuer¹, A. Laureau², E. Merle¹, M. Allibert¹, and S. Delpech³

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France 2 Subatech-IN2P3-CNRS / IMT Atlantique / Laboratoire de physique subatomique et des technologies associées - 4 rue Alfred Kastler - La Chantrerie, 44307 Nantes, France 3 IJCLab-IN2P3-CNRS / Université Paris-Saclay - 15 rue Georges Clemenceau, 91405 Orsay Cedex

Corresponding author: pitois@lpsc.in2p3.fr

Introduction

Objective: to design and optimise a breeder Molten Salt Fast Reactor with chloride salts (MSFR-Cl) making use of transuranic elements (TRUs) of spent fuels to close the fuel cycle

Chloride MSFR presentation

- Optimised fuel salt volume for inventory minimisation and efficient heat extraction (3GWth): <u>60m³</u>
- . Optimised fertile blanket width for inventory minimisation and breeding ratio maximisation: <u>9</u>6cm
- Structure: Hastelloy N / Neutronic protection: B₄C
- MSFRs-Cl can be started with TRUs from spent fuels, enriched uranium, breeded plutonium ...

Initial inventory for different fuel options (masses: fuel + fertile salts)

					_
 _	_			_	

Fuer	Naci			I RU Mass	U Mass	IOLAI MASS
ex-UOx (5y)	65.5%	28.0%	6.5%	16.6t + 1.6t	70.7t + 51.2t	170t + 103t
ex-MOx (15y)	65.0%	26.5%	8.5%	21.6t + 1.6t	66.7t + 51.2t	170t + 103t
^{enr} U (e=16.4%)	67.0%	33.0%	0%	0.0t + 1.6t	84.7t + 51.2t	168t + 103t
Breeded Pu	65.7%	28.6%	5.7%	14.6t + 1.6t	72.4 + 51.2t	169t + 103t

Storage Salt processing (Decay time to define) Objectives: Storage - metals NaCl + LnCl_x + AnCl₃ + others * salt • Source term minimisation sample metal extraction $Cl_2(g)$ Gases & sample Cl purification unit • Neutron economy increased: better regeneration Actinides extraction of salt filled with Liquid metal filtration (electrolysis) • Prevention of corrosion induced by fission products metal particles An +|εLn (m) $Cl_2(g)$ salt MSFR Chloride gases Chlorination • Full on-site processing or partial on-site processing are possible Core NaCl + LnCl₃ + others * O₂ (g) . Incentives for the full on-site processing: Storage volatile Cold traps Lanthanides extraction volatile FPs remaining gases . Minimised enriched chlorine inventory FPs Oxidation Storage - Ln Ln (m) Ln_2O_3 (reductive extraction) . Transport of fission products in stable chemical form (necessary amount to part of NaCl NaCl + εLnCl₃ + others * prevent pressure increase) gases . Incentives for the partial on-site reprocessing: @H. Pitois (LPSC/CNRS), . Simplified on-site unit Proportion adjustment M. Allibert (LPSC/CNRS), Gas separation process** & Temperature control S. Delpech (IJCLAB/CNRS), • Delayed processing allows more processes including aqueous $AnCl_3 + \varepsilon LnCl_3$ (I) ** possibilities : J. Serp (CEA), chemistry in an external factory cryogenic separation, G. Senentz (Orano) Storage - gases * Including part of alkali metals, membrane filtration, ... Storage (TRUs)Cl₃ Storage UCl₂ of alkaline earth metals Storage NaCl Full on-site processing

Depletion calculations

- . Depletion calculations performed using in-house CNRS code REM to consider extractions and feedings
- Here the fuel salt is fed with the same elements it is started with but other options are possible
- Optimised processing flowrates are **100L/d** for the fuel salt and **50L/d** for the fertile salt
- Extraction efficiencies are taken equal to 100%
- . Ongoing work to feed the fuel salt with the excess of Am

Actinide balance for spent MOx TRU fuelled MSFR-Cl

mass flow (kg/y)	U	Np	Pu	Am	Cm	
core feeding	1102.05	0.02	2.59	0.42	0.07	
fertile blanket feeding	361.59	0.00	478.93	0.00	0.00	
fertile blanket extraction	4.29	1.34	742.87	26.39	0.06	
average net output per year	-1459.35	1.32	261.34	25.97	-0.02	

Deployment scenarios (example)

French case with following hypotheses:

- Start of EPRs in 2025; start of MSFRs-Cl fuelled with TRUs from spent MOx in 2050
- Priority: MSFRs, then MOx fuelled EPRs, then UOx fuelled EPRs
- . End of UOx fuelled EPRs in 2100; MOx fuelled EPRs and MSFRs continue to reduce waste stockpiles

Final stockpiles

Proliferation resistance

- Several options are possible, spent MOx Pu addition in the fertile salt is considered here
- **Synergy with EPRs** by regeneration of Pu vector (aim: 60% of 239 Pu ~ Pu in spent UOx)
- Pu vector is chosen by the amount of Pu maintained and the processing rate of the fertile salt
- Current choice: 1% of PuCl₃ + 50L/d for the processing rate in the fertile blanket

Final masses EPRs With only **MSFR-CI** ^{nat}U used 687 kt 659 kt Spent UOx | Practically | Practically TRUs eliminated eliminated Spent **25 t** 225 t **MOx TRUs** (Am & Cm) TRUs from 110 t * **MSFRs**

* 47t of breeded Pu + 63t of TRUs from MSFRs

Evolution of the fleet with MSFRs-Cl

. Spent MOx TRUs stockpile is greatly reduced, Am & Cm could be used in MSFR fuel (ongoing work) • Less ^{nat}U consumption; final wastes could be burnt in alternative MSFR configurations: burners

Review & perspectives

Chloride MSFR designed to use TRUs from spent fuels to close the fuel cycle

- Geometry optimisation:
 - Optimised volume of fuel salt: 60m³
 - . Optimised fertile blanket width: 96cm
 - Neutronic protection is being optimised
- . Design of new fuel processing units
- Synergy with EPRs is possible, with the improvement of the Pu vector
- Ongoing deployment studies to assess the interest of MSFRs-Cl and adjust the design, for French deployment or worldwide deployment
- Alternative versions of the reactor (smaller power, configuration without fertile blanket) will be studied later on